论文标题
在全体形态图的Lyapunov指数上
On the pointwise Lyapunov exponent of holomorphic maps
论文作者
论文摘要
我们证明,对于任何骨膜图,以及任何没有积聚到单数集或吸引周期的有界轨道,其较低的Lyapunov指数是非负的。对于无界轨道,对于带有界单数集的地图,相同的结果也可以。此外,只要足够慢,轨道可能会积聚到无穷大或奇异集。
We prove that for any holomorphic map, and any bounded orbit which does not accumulate to a singular set or to an attracting cycle, its lower Lyapunov exponent is non-negative. The same result holds for unbounded orbits, for maps with a bounded singular set. Furthermore, the orbit may accumulate to infinity or to a singular set, as long as it is slow enough.