论文标题

从八元国电位$ \ mathbb p^2 $到假$ \ mathbb p^2 $的旅程

A journey from the octonionic $\mathbb P^2$ to a fake $\mathbb P^2$

论文作者

Borisov, Lev, Buch, Anders, Fatighenti, Enrico

论文摘要

我们发现了一个$ k^2 = 3 $和$ p = 0 $的通用类型表面的家族,免费$ c_ {13} $特殊线性切割的商八元射击平面$ \ mathbb o \ mathbb o \ mathbb p^2 $。该家庭的一个特殊成员具有$ 3 $ $ a_2 $的$ 3 $奇异性,并且是伪造飞机的商。我们使用\ cite {bf20}的技术来定义这种假射击平面,该方程在其双色嵌入中。

We discover a family of surfaces of general type with $K^2=3$ and $p=q=0$ as free $C_{13}$ quotients of special linear cuts of the octonionic projective plane $\mathbb O \mathbb P^2$. A special member of the family has $3$ singularities of type $A_2$, and is a quotient of a fake projective plane. We use the techniques of \cite{BF20} to define this fake projective plane by explicit equations in its bicanonical embedding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源