论文标题

MPCC:匹配先验和聚类的条件

MPCC: Matching Priors and Conditionals for Clustering

论文作者

Astorga, Nicolás, Huijse, Pablo, Protopapas, Pavlos, Estévez, Pablo

论文摘要

聚类是无监督学习的基本任务,在很大程度上取决于所使用的数据表示。深层生成模型似乎是学习信息丰富的低维数据表示形式的有前途的工具。我们提出了用于聚类的匹配先验和条件(MPCC),这是一种基于GAN的模型,该模型具有编码器,从数据中推断潜在变量和群集类别,以及灵活的解码器,以从条件潜在的空间中生成样品。使用MPCC,我们证明了深层生成模型可以在聚集任务中超过各种基准数据集的歧视方法的歧视方法。我们的实验表明,添加可学习的先验并增加编码器更新的数量提高了生成的样品的质量,获得了9.49 $ \ pm $ 0.15的成立分数,并在CIFAR10中提高了46.9%的fréchet成立距离。

Clustering is a fundamental task in unsupervised learning that depends heavily on the data representation that is used. Deep generative models have appeared as a promising tool to learn informative low-dimensional data representations. We propose Matching Priors and Conditionals for Clustering (MPCC), a GAN-based model with an encoder to infer latent variables and cluster categories from data, and a flexible decoder to generate samples from a conditional latent space. With MPCC we demonstrate that a deep generative model can be competitive/superior against discriminative methods in clustering tasks surpassing the state of the art over a diverse set of benchmark datasets. Our experiments show that adding a learnable prior and augmenting the number of encoder updates improve the quality of the generated samples, obtaining an inception score of 9.49 $\pm$ 0.15 and improving the Fréchet inception distance over the state of the art by a 46.9% in CIFAR10.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源