论文标题

敌对环境的强大而有效的群体交流拓扑

Robust and Efficient Swarm Communication Topologies for Hostile Environments

论文作者

Mann, Vipul, Sivaram, Abhishek, Das, Laya, Venkatasubramanian, Venkat

论文摘要

基于群体智能的优化技术将搜索空间的系统探索与邻居提供的信息结合在一起,并强烈依赖代理之间的通信。这些算法通常用于解决该功能局面未充分了解的问题,并且有多种局部优势可能导致其他算法过早收敛。可以在涉及网络设计的通信系统中找到此类算法的应用,以有效地向目标群体传播靶向群体,在散布之前药物分子搜索受影响的位点,以及使用无人机网络进行高价值目标定位。在此类应用中,代理人面临敌对的环境,可能会导致搜索过程中的代理商损失。这样的损失改变了代理商的通信拓扑,因此会影响代理商可用的信息,最终影响了算法的性能。在本文中,我们介绍了代理损失对此类算法的性能的影响,这是初始网络配置的函数。我们使用粒子群优化在敌对环境中优化具有多个亚最佳区域的目标函数,并研究其在一系列具有代理损失的网络拓扑的性能。结果揭示了效率,鲁棒性和性能之间有趣的权衡,这些拓扑随后利用,这些拓扑被利用,以发现最大程度地提高性能的网络的一般特性。此外,可以看到具有小世界特性的网络在敌对条件下最大程度地提高性能。

Swarm Intelligence-based optimization techniques combine systematic exploration of the search space with information available from neighbors and rely strongly on communication among agents. These algorithms are typically employed to solve problems where the function landscape is not adequately known and there are multiple local optima that could result in premature convergence for other algorithms. Applications of such algorithms can be found in communication systems involving design of networks for efficient information dissemination to a target group, targeted drug-delivery where drug molecules search for the affected site before diffusing, and high-value target localization with a network of drones. In several of such applications, the agents face a hostile environment that can result in loss of agents during the search. Such a loss changes the communication topology of the agents and hence the information available to agents, ultimately influencing the performance of the algorithm. In this paper, we present a study of the impact of loss of agents on the performance of such algorithms as a function of the initial network configuration. We use particle swarm optimization to optimize an objective function with multiple sub-optimal regions in a hostile environment and study its performance for a range of network topologies with loss of agents. The results reveal interesting trade-offs between efficiency, robustness, and performance for different topologies that are subsequently leveraged to discover general properties of networks that maximize performance. Moreover, networks with small-world properties are seen to maximize performance under hostile conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源