论文标题

第一轮由Tianqin-1卫星产生

The First Round Result from the TianQin-1 Satellite

论文作者

Luo, Jun, Bai, Yan-Zheng, Cai, Lin, Cao, Bin, Chen, Wei-Ming, Chen, Yu, Cheng, De-Cong, Ding, Yan-Wei, Duan, Hui-Zong, Gou, Xingyu, Gu, Chao-Zheng, Gu, De-Feng, He, Zi-Qi, Hu, Shuang, Hu, Yuexin, Huang, Xiang-Qing, Jiang, Qinghua, Jiang, Yuan-Ze, Li, Hong-Gang, Li, Hong-Yin, Li, Jia, Li, Ming, Li, Zhu, Li, Zhu-Xi, Liang, Yu-Rong, Liao, Fang-Jie, Liu, Yan-Chong, Liu, Li, Liu, Pei-Bo, Liu, Xuhui, Liu, Yuan, Lu, Xiong-Fei, Luo, Yan, Mei, Jianwei, Ming, Min, Qu, Shao-Bo, Tan, Ding-Yin, Tang, Mi, Tu, Liang-Cheng, Wang, Cheng-Rui, Wang, Fengbin, Wang, Guan-Fang, Wang, Jian, Wang, Lijiao, Wang, Xudong, Wei, Ran, Wu, Shu-Chao, Xiao, Chun-Yu, Xie, Meng-Zhe, Xu, Xiao-Shi, Yang, Liang, Yang, Ming-Lin, Yang, Shan-Qing, Yeh, Hsien-Chi, Yu, Jian-Bo, Zhang, Lihua, Zhao, Meng-Hao, Zhou, Ze-Bing

论文摘要

TIANQIN-1卫星(TQ-1)是Tianqin项目的第一个技术演示卫星,于2019年12月20日发射。第一轮实验是从2019年12月21日至2020年4月1日进行的。卫星的残留加速度。发现该卫星的剩余加速度为$ 1 \ times10^times10^{-10^{-10}} s}^{2}/{\ rm hz}^{1/2} $ at $ 0.1〜 {\ rm hz} \,$和$ 5 \ times10^{ - 11}〜{\ rm m} $ 0.05〜 {\ rm hz} \,$,由惯性传感器衡量,灵敏度为$ 5 \ times10^{ - 12}〜{\ rm m}/{\ rm s}^{\ rm s}^{2}^{2}/{\ rm Hz}}^{\ rm Hz}^{1/2} {1/2} $ 0.1/0.1/0.1/0.1/0.1/n n \ n \ ar {微型牛顿推进器已证明推力分辨率为$ 0.1〜μ {\ rm n} $,推力噪声为$ 0.3〜μ {\ rm n}/{\ rm hz}^{1/2} $ 0.1〜 {\ rm hz} $。带有无拖放控制的卫星的残余噪声为$ 3 \ times10^{ - 9}〜{\ rm m}/{\ rm s}^{2}^{2}/{\ rm hz}^{1/2} $ 0.1〜 {\ rm hz}^$ at $ 0.1〜 {\ rm hz} \,$。光学读数系统的噪声水平约为$ 30〜 {\ rm pm}/{\ rm hz}^{1/2} $ at $ 0.1〜 {\ rm hz} \,$。温度监测位置的温度稳定性被控制为每个轨道的$ \ pm3〜 {\ rm mk} $,并且卫星中心中心与测试质量的不匹配的精度高于$ 0.1〜 {\ rm mmmm} $。

The TianQin-1 satellite (TQ-1), which is the first technology demonstration satellite for the TianQin project, was launched on 20 December 2019. The first round of experiment had been carried out from 21 December 2019 until 1 April 2020. The residual acceleration of the satellite is found to be about $1\times10^{-10}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$ and about $5\times10^{-11}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.05~{\rm Hz}\,$, measured by an inertial sensor with a sensitivity of $5\times10^{-12}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$. The micro-Newton thrusters has demonstrated a thrust resolution of $0.1~μ{\rm N}$ and a thrust noise of $0.3~μ{\rm N}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}$. The residual noise of the satellite with drag-free control is $3\times10^{-9}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$. The noise level of the optical readout system is about $30~{\rm pm}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$. The temperature stability at temperature monitoring position is controlled to be about $\pm3~{\rm mK}$ per orbit, and the mismatch between the center-of-mass of the satellite and that of the test mass is measured with a precision of better than $0.1~{\rm mm}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源