论文标题

离线上下文的多军匪徒,用于移动健康干预措施:情绪调节的案例研究

Offline Contextual Multi-armed Bandits for Mobile Health Interventions: A Case Study on Emotion Regulation

论文作者

Ameko, Mawulolo K., Beltzer, Miranda L., Cai, Lihua, Boukhechba, Mehdi, Teachman, Bethany A., Barnes, Laura E.

论文摘要

通过普遍的电子设备(例如移动电话)提供治疗建议,有可能成为长期健康行为管理的可行且可扩展的治疗培养基。但是,在某些情况下,对治疗选择的积极实验可能是耗时,昂贵且完全不道德的。对方法论方法的兴趣越来越大,可以使实验者在部署前学习和评估新的治疗策略的实用性。我们使用来自N = 114个高社会焦虑参与者的现实世界历史移动数字数据来测试新情绪调节策略的有用性,介绍了一种用于情绪调节的治疗建议系统。我们探索许多脱机上下文匪徒学习的估计量,并提出了学习算法的一般框架。我们的实验表明,所提出的双线脱机学习算法的性能明显优于基线方法,这表明这种建议算法可以改善情绪调节。鉴于在许多精神疾病中受损的情绪调节受损,并且这种推荐算法可以轻松扩展,因此这种方法具有增加许多人获得治疗的潜力。我们还分享了一些见解,使我们能够将上下文的强盗模型转换为这个复杂的现实世界数据,包括哪些上下文特征似乎对于预测情绪调节策略有效性最重要。

Delivering treatment recommendations via pervasive electronic devices such as mobile phones has the potential to be a viable and scalable treatment medium for long-term health behavior management. But active experimentation of treatment options can be time-consuming, expensive and altogether unethical in some cases. There is a growing interest in methodological approaches that allow an experimenter to learn and evaluate the usefulness of a new treatment strategy before deployment. We present the first development of a treatment recommender system for emotion regulation using real-world historical mobile digital data from n = 114 high socially anxious participants to test the usefulness of new emotion regulation strategies. We explore a number of offline contextual bandits estimators for learning and propose a general framework for learning algorithms. Our experimentation shows that the proposed doubly robust offline learning algorithms performed significantly better than baseline approaches, suggesting that this type of recommender algorithm could improve emotion regulation. Given that emotion regulation is impaired across many mental illnesses and such a recommender algorithm could be scaled up easily, this approach holds potential to increase access to treatment for many people. We also share some insights that allow us to translate contextual bandit models to this complex real-world data, including which contextual features appear to be most important for predicting emotion regulation strategy effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源