论文标题

通过可区分的编程和自然进化策略,用于对Majoanas的量子控制的协议发现

Protocol Discovery for the Quantum Control of Majoranas by Differentiable Programming and Natural Evolution Strategies

论文作者

Coopmans, Luuk, Luo, Di, Kells, Graham, Clark, Bryan K., Carrasquilla, Juan

论文摘要

量子控制是指量子力学定律描述的物理系统的主动操纵,构成了量子技术开发的重要成分。在这里,我们将可区分的编程(DP)和自然进化策略(NES)应用于超导纳米线中的Majorana零模式的最佳运输,这是基于Majorana的拓扑量子计算成功的关键要素。我们将Majorana零模式的运动控制作为一个优化问题,我们提出了有关系统的临界速度和总运输时间的四个不同制度的新分类。除了正确恢复绝热制度中预期的平滑方案外,我们的算法还发现了非绝热制度中有效但出色的反直觉运动策略。紧急图片揭示了一种简单但高的保真度策略,该策略在跳跃之间使用恒定速度时,在协议的开头和协议结束时使用类似脉冲的跳跃,我们将跳跃摩托车跳跃的协议配音。我们提供了透明的半分析图片,该图片利用了运动框架中Majorana运动的突然近似和重新制定,以阐明跳动式跳动控制策略的关键特征。我们验证了跳跃 - 跳跃方案在相互作用或混乱的存在上保持鲁棒性,并证实了其在现实的接近耦合纳米线模型上的高疗效。我们的结果表明,用于量子控制的机器学习可以有效地应用于具有性能水平的量子多体动力学系统,这使其与实现大规模量子技术有关。

Quantum control, which refers to the active manipulation of physical systems described by the laws of quantum mechanics, constitutes an essential ingredient for the development of quantum technology. Here we apply Differentiable Programming (DP) and Natural Evolution Strategies (NES) to the optimal transport of Majorana zero modes in superconducting nanowires, a key element to the success of Majorana-based topological quantum computation. We formulate the motion control of Majorana zero modes as an optimization problem for which we propose a new categorization of four different regimes with respect to the critical velocity of the system and the total transport time. In addition to correctly recovering the anticipated smooth protocols in the adiabatic regime, our algorithms uncover efficient but strikingly counter-intuitive motion strategies in the non-adiabatic regime. The emergent picture reveals a simple but high fidelity strategy that makes use of pulse-like jumps at the beginning and the end of the protocol with a period of constant velocity in between the jumps, which we dub the jump-move-jump protocol. We provide a transparent semi-analytical picture, which uses the sudden approximation and a reformulation of the Majorana motion in a moving frame, to illuminate the key characteristics of the jump-move-jump control strategy. We verify that the jump-move-jump protocol remains robust against the presence of interactions or disorder, and corroborate its high efficacy on a realistic proximity coupled nanowire model. Our results demonstrate that machine learning for quantum control can be applied efficiently to quantum many-body dynamical systems with performance levels that make it relevant to the realization of large-scale quantum technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源