论文标题
设计三维平面乐队
Designing three-dimensional flat bands in nodal-line semimetals
论文作者
论文摘要
具有较大动能的电子具有无限吸引力相互作用的超导不稳定。淬灭动能并创建平坦的频带会导致相关的扰动无限的排斥相互作用。因此,平面频带系统是研究超导性和磁性及其可能共存的竞争的理想平台。在二维材料的背景下,扭曲的双层石墨烯领域的最新进展突出了这一点。然而,二维对由于波动的增大而严重限制了低温阶段的稳定性。只有三维平坦带可以解决将外来平面相结合与高温下稳定顺序相结合的难题。在这里,我们提供了一种通过拓扑结节线半学分的应变工程产生这种平坦乐队的方法。我们为这种情况提供了分析和数值证据,并研究了出现的超导和磁性的竞争,这是外部控制参数的函数。我们表明该顺序参数是刚性的,因为Bloch波的量子几何形状会导致较大的超流体刚度。使用密度功能理论和数值紧密结合计算,我们进一步将理论应用于紧张的菱形石墨和CAAGP材料。
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, flat band systems are an ideal platform to study the competition of superconductivity and magnetism and their possible coexistence. Recent advances in the field of twisted bilayer graphene highlight this in the context of two-dimensional materials. Two dimensions, however, put severe restrictions on the stability of the low-temperature phases due to enhanced fluctuations. Only three-dimensional flat bands can solve the conundrum of combining the exotic flat-band phases with stable order existing at high temperatures. Here, we present a way to generate such flat bands through strain engineering in topological nodal-line semimetals. We present analytical and numerical evidence for this scenario and study the competition of the arising superconducting and magnetic orders as a function of externally controlled parameters. We show that the order parameter is rigid because the quantum geometry of the Bloch wave functions leads to a large superfluid stiffness. Using density-functional theory and numerical tight-binding calculations we further apply our theory to strained rhombohedral graphite and CaAgP materials.