论文标题

训练图等构象网络中的敏感性

Training Sensitivity in Graph Isomorphism Network

论文作者

Rahman, Md. Khaledur

论文摘要

图神经网络(GNN)是学习图的低维表示的流行工具。它通过合并特定于域的功能来促进机器学习任务在图形上的适用性。在实施GNN时,可以考虑基础过程(例如优化函数,激活功能等)的各种选择。但是,大多数现有工具仅限于一种方法,而无需进行任何分析。因此,这个新兴领域缺乏强大的实现,忽略了现实世界图的高度不规则结构。在本文中,我们试图通过使用一组不同的基准数据集研究各个模块的各种模块来填补这一空白。我们的经验结果表明,通常使用的基础技术并不总是能从一组图中捕获整体结构。

Graph neural network (GNN) is a popular tool to learn the lower-dimensional representation of a graph. It facilitates the applicability of machine learning tasks on graphs by incorporating domain-specific features. There are various options for underlying procedures (such as optimization functions, activation functions, etc.) that can be considered in the implementation of GNN. However, most of the existing tools are confined to one approach without any analysis. Thus, this emerging field lacks a robust implementation ignoring the highly irregular structure of the real-world graphs. In this paper, we attempt to fill this gap by studying various alternative functions for a respective module using a diverse set of benchmark datasets. Our empirical results suggest that the generally used underlying techniques do not always perform well to capture the overall structure from a set of graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源