论文标题
与Reuleaux负踏板曲线相关的特殊圆锥
A Special Conic Associated with the Reuleaux Negative Pedal Curve
论文作者
论文摘要
Reuleaux Triangle W.R.的负踏板曲线边界上的点$ m $由两个椭圆弧和一个$ p_0 $组成。有趣的是,穿过四个弧端点的圆锥体和$ p_0 $具有非凡的财产:其焦点之一是$ m $。我们根据Poncelet的极性双重性和反逆技术提供了合成的证明。 Reuleaux负面踏板的其他有趣特性是使用直接技术证明的。
The Negative Pedal Curve of the Reuleaux Triangle w.r. to a point $M$ on its boundary consists of two elliptic arcs and a point $P_0$. Interestingly, the conic passing through the four arc endpoints and by $P_0$ has a remarkable property: one of its foci is $M$. We provide a synthetic proof based on Poncelet's polar duality and inversive techniques. Additional intriguing properties of Reuleaux negative pedal are proved using straightforward techniques.