论文标题

高性能同时多处理,用于异质系统片

High-Performance Simultaneous Multiprocessing for Heterogeneous System-on-Chip

论文作者

Nikov, Kris, Hosseinabady, Mohammad, Asenjo, Rafael, Rodríguezz, Andrés, Navarro, Angeles, Nunez-Yanez, Jose

论文摘要

本文介绍了一种同时异质计算的方法,名为ENEAC,其中四核臂Cortex-A53 CPU与板上的FPGA加速器同时起作用。异构调度程序在所有资源中最佳分发任务,并且所有计算单元不同步,这可以改善不规则工作负载的性能。与仅使用FPGA加速器相比,使用所有平台资源时,ENEAC可实现高达17 \%的性能提高{和14 \%\%的能量使用量减少,}当使用CPU时,使用所有平台资源},高达89 \%的能量使用},最多可忽略89 \%的能量使用}。该工作流将现有的商业工具和C/C ++用作加速器设计和CPU编程的单一编程语言,以提高生产力和易于验证。

This paper presents a methodology for simultaneous heterogeneous computing, named ENEAC, where a quad core ARM Cortex-A53 CPU works in tandem with a preprogrammed on-board FPGA accelerator. A heterogeneous scheduler distributes the tasks optimally among all the resources and all compute units run asynchronously, which allows for improved performance for irregular workloads. ENEAC achieves up to 17\% performance improvement \ignore{and 14\% energy usage reduction,} when using all platform resources compared to just using the FPGA accelerators and up to 865\% performance increase \ignore{and up to 89\% energy usage decrease} when using just the CPU. The workflow uses existing commercial tools and C/C++ as a single programming language for both accelerator design and CPU programming for improved productivity and ease of verification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源