论文标题
闭环计算机辅助肺超声的图像质量评估
Image quality assessment for closed-loop computer-assisted lung ultrasound
论文作者
论文摘要
我们描述了一种新型的两阶段计算机辅助系统,用于使用重症监护设置中的超声成像进行肺部异常检测,以改善冠状病毒大流行病期间的操作员性能和患者分层。所提出的系统由两个基于深度学习的模型组成:一个自动化图像质量预测的质量评估模块,以及一个确定足够质量的超声图像中的可能性 - OH-Anomaly的诊断辅助模块。我们的两阶段策略使用新颖的检测算法来解决缺乏可用于培训质量评估分类器的控制案例。然后,可以通过质量评估模块的闭环反馈机制来保证诊断辅助模块,并使用具有足够质量的数据进行培训。本研究使用了在两家医院扫描的37名Covid-19阳性患者的25000多个超声图像,另外12例对照病例,证明了使用建议的机器学习方法的可行性。当通过质量评估模块之间分类到足够和不足的质量图像之间,我们报告的准确性为86%。对于足够质量的数据 - 由质量评估模块确定 - 在检测COVID -19阳性病例中的平均分类准确性,敏感性和特异性分别为0.95、0.91和0.97,在五个保留测试数据集中在提议拟议的系统中培训期间未见的五个保留测试数据集。总体而言,这两个模块的整合可为患有疑似呼吸系统疾病的患者提供准确,快速和实际的获得指导和诊断援助。
We describe a novel, two-stage computer assistance system for lung anomaly detection using ultrasound imaging in the intensive care setting to improve operator performance and patient stratification during coronavirus pandemics. The proposed system consists of two deep-learning-based models: a quality assessment module that automates predictions of image quality, and a diagnosis assistance module that determines the likelihood-oh-anomaly in ultrasound images of sufficient quality. Our two-stage strategy uses a novelty detection algorithm to address the lack of control cases available for training the quality assessment classifier. The diagnosis assistance module can then be trained with data that are deemed of sufficient quality, guaranteed by the closed-loop feedback mechanism from the quality assessment module. Using more than 25000 ultrasound images from 37 COVID-19-positive patients scanned at two hospitals, plus 12 control cases, this study demonstrates the feasibility of using the proposed machine learning approach. We report an accuracy of 86% when classifying between sufficient and insufficient quality images by the quality assessment module. For data of sufficient quality - as determined by the quality assessment module - the mean classification accuracy, sensitivity, and specificity in detecting COVID-19-positive cases were 0.95, 0.91, and 0.97, respectively, across five holdout test data sets unseen during the training of any networks within the proposed system. Overall, the integration of the two modules yields accurate, fast, and practical acquisition guidance and diagnostic assistance for patients with suspected respiratory conditions at point-of-care.