论文标题

基础除数和平衡指标

Basis divisors and balanced metrics

论文作者

Rubinstein, Yanir A., Tian, Gang, Zhang, Kewei

论文摘要

使用日志规范阈值和基础除数Fujita-Odaka引入了纯粹的代数几何不变式$Δ_M$,其$ m $中的极限现在已知是在Fano品种上表征均匀的K稳定性。如Blum-Jonsson所示,这将延续到一般的极化,并与Berman,Boucksom和Jonsson的作品一起,现在众所周知,这些$Δ_M$ $ invariants的极限表征了统一的滴定稳定性。一个基本问题以来,藤田 - 奥达卡(Fujita-Odaka)的工作是找到对这些不变的分析解释。我们表明,每个$Δ_M$都是量化的ding在$ m $ th伯格曼空间上起作用的强制性阈值,因此表征了平衡指标的存在。这种方法有许多应用程序。最基本的是,它提供了一种计算这些不变性的替代方法,即使对于$ \ Mathbb {p}^n $,这也是新的。其次,它使我们能够引入代数定义的不变性,这些代数定义为Kähler-ricci solitons的存在(以及更通用的$ g $ $ solitons of Berman-WittNyström),以及其耦合版本。第三,它导致近似结果,涉及在存在唐纳森(Donaldson)的一些结果的情况下,涉及平衡指标。

Using log canonical thresholds and basis divisors Fujita--Odaka introduced purely algebro-geometric invariants $δ_m$ whose limit in $m$ is now known to characterize uniform K-stability on a Fano variety. As shown by Blum-Jonsson this carries over to a general polarization, and together with work of Berman, Boucksom, and Jonsson, it is now known that the limit of these $δ_m$-invariants characterizes uniform Ding stability. A basic question since Fujita-Odaka's work has been to find an analytic interpretation of these invariants. We show that each $δ_m$ is the coercivity threshold of a quantized Ding functional on the $m$-th Bergman space and thus characterizes the existence of balanced metrics. This approach has a number of applications. The most basic one is that it provides an alternative way to compute these invariants, which is new even for $\mathbb{P}^n$. Second, it allows us to introduce algebraically defined invariants that characterize the existence of Kähler-Ricci solitons (and the more general $g$-solitons of Berman-Witt Nyström), as well as coupled versions thereof. Third, it leads to approximation results involving balanced metrics in the presence of automorphisms that extend some results of Donaldson.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源