论文标题
EFX的存在用于两个添加剂估值
Existence of EFX for Two Additive Valuations
论文作者
论文摘要
不可分割的物品的公平划分是经济学和计算机科学方面的一个充分研究的话题。目的是以公平的方式将项目分配给代理,每个代理都有每个项目子集的估值。嫉妒是最广泛研究的公平概念之一。由于当项目不可分割时并不总是存在,因此已经考虑了几种放松。其中,最引人注目的可能是任何项目(EFX)的嫉妒,没有代理在从其他代理的捆绑包中删除任何单个项目后会羡慕其他代理。但是,尽管许多研究人员已经做出了巨大的努力,但众所周知,只有在有限的情况下总是存在完整的EFX分配。在本文中,我们表明,当每个代理都是给定类型之一的一种,同一类型的代理具有相同的添加剂估值时,总是存在完整的EFX分配。这是当存在任何数量的代理和项目时,这是非相同估值的第一个存在结果,并且代理人可以对单个项目拥有的不同值的数量没有限制。我们给出了一个建设性的证据,在该证明中,我们从现有的部分EFX分配中获得了帕累托主导(部分)EFX分配。
Fair division of indivisible items is a well-studied topic in Economics and Computer Science. The objective is to allocate items to agents in a fair manner, where each agent has a valuation for each subset of items. Envy-freeness is one of the most widely studied notions of fairness. Since complete envy-free allocations do not always exist when items are indivisible, several relaxations have been considered. Among them, possibly the most compelling one is envy-freeness up to any item (EFX), where no agent envies another agent after the removal of any single item from the other agent's bundle. However, despite significant efforts by many researchers for several years, it is known that a complete EFX allocation always exists only in limited cases. In this paper, we show that a complete EFX allocation always exists when each agent is of one of two given types, where agents of the same type have identical additive valuations. This is the first such existence result for non-identical valuations when there are any number of agents and items and no limit on the number of distinct values an agent can have for individual items. We give a constructive proof, in which we iteratively obtain a Pareto dominating (partial) EFX allocation from an existing partial EFX allocation.