论文标题

完整的K曲面歧管的紧凑定理具有孤立的奇异性

Compactness Theorem of Complete k-Curvature Manifolds with Isolated Singularities

论文作者

Wei, Wei

论文摘要

在本文中,我们证明了$ \ Mathbb {s}^{n} \ backslash \ {p_ {1},\ cdots,p_ {l} \} $在$ c^{m,α} $ topolation in n y $ c^{m,p_} $ pologial for n $ c^{m,p_} $ topolotic for n $ c^{m,p_} $ topologe, $σ_{k} $曲率和$ k $ -dilational pohozaev不变式的下限为$ k <n/2 $。在这里,$ k $ - diLalational pohozaev不变式来自$σ_{k} $曲率的kazdan-warner类型标识,该标识由Viaclovsky \ cite \ cite {viac2000}和han \ cite {h1}得出。当$ k = 1 $时,Pollack \ Cite {Pollack}证明了$ \ Mathbb {s}^{n} \ backslash \ backslash \ {p_ {1},\ cdots,p_ {l} \ \} \} $的完整指标的紧凑度结果。

In this paper we prove that the set of metrics conformal to the standard metric on $\mathbb{S}^{n}\backslash\{p_{1},\cdots,p_{l}\}$ is locally compact in $C^{m,α}$ topology for any $m>0$, whenever the metrics have constant $σ_{k}$ curvature and the $k$-Dilational Pohozaev invariants have positive lower bound for $k<n/2$. Here the $k$-Dilational Pohozaev invariants come from the Kazdan-Warner type identity for the $σ_{k}$ curvature, which is derived by Viaclovsky \cite{Viac2000} and Han \cite{H1}. When $k=1$, Pollack \cite{Pollack} proved the compactness results for the complete metrics of constant positive scalar curvature on $\mathbb{S}^{n}\backslash\{p_{1},\cdots,p_{l}\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源