论文标题
几何量子热力学
Geometric Quantum Thermodynamics
论文作者
论文摘要
在几何量子力学和经典力学之间的相似之处,我们探索了量子热力学的替代基础,该基础利用了基础状态空间的差异几何形状。我们既开发微型典型和规范的集合,又引入了连续混合状态,作为量子状态多种分布的连续混合状态。我们列出了Qudits气体的实验后果。我们以内在的方式定义量子热和工作,包括单条件工作,并以与经典,量子和信息理论熵相符的方式重新制定热力学熵。我们提供热力学的第一和第二定律以及Jarzynki的波动定理。结果是一种比传统上可用的更透明的物理学,其中数学结构和物理直觉的基础经典和量子动力学被认为是紧密对齐的。
Building on parallels between geometric quantum mechanics and classical mechanics, we explore an alternative basis for quantum thermodynamics that exploits the differential geometry of the underlying state space. We develop both microcanonical and canonical ensembles, introducing continuous mixed states as distributions on the manifold of quantum states. We call out the experimental consequences for a gas of qudits. We define quantum heat and work in an intrinsic way, including single-trajectory work, and reformulate thermodynamic entropy in a way that accords with classical, quantum, and information-theoretic entropies. We give both the First and Second Laws of Thermodynamics and Jarzynki's Fluctuation Theorem. The result is a more transparent physics, than conventionally available, in which the mathematical structure and physical intuitions underlying classical and quantum dynamics are seen to be closely aligned.