论文标题

量子优化的低深度机制

Low depth mechanisms for quantum optimization

论文作者

McClean, Jarrod R., Harrigan, Matthew P., Mohseni, Masoud, Rubin, Nicholas C., Jiang, Zhang, Boixo, Sergio, Smelyanskiy, Vadim N., Babbush, Ryan, Neven, Hartmut

论文摘要

易于使用的量子计算机的主要应用领域之一是经典目标函数的优化。在这项工作中,我们基于与量子系统,量子步行和经典连续放松的简单动态的连接,为这些算法开发了一大批这些算法的直观构造。我们专注于在图上开发与动能相关的语言和工具,以了解成功和未能指导算法改进的物理机制。这种物理语言结合了与单位性相关的独特结果,使我们能够从根本上从基本上反对优化目标中识别出一些潜在的陷阱。这与波函数限制,相随机化和阴影缺陷相关的效果连接起来,潜伏在远离理想解决方案的物体中。例如,我们探讨了许多量子方法在解决未耦合的旋转问题方面的令人惊讶的缺陷,以及这两者如何预测一些更复杂的系统上的性能,同时立即提出简单的分辨率。进一步研究诸如锤坡道或灌木丛(涉及灌木丛)的规范问题表明,纠缠可能严重损害了诸如QAOA之类的方法的基本机制的性能结果。动能和图形Laplacian观点为QAOA中的共同初始化和最佳解决方案提供了新的见解,以及更有效的层次训练的新方法。与连续扩展,同质方法和迭代舍入的经典方法的连接提出了量子优化研究的新方向。在整个过程中,我们使用物理观点揭示了量子优化的许多陷阱和机制,旨在刺激新型量子优化算法和改进的发展。

One of the major application areas of interest for both near-term and fault-tolerant quantum computers is the optimization of classical objective functions. In this work, we develop intuitive constructions for a large class of these algorithms based on connections to simple dynamics of quantum systems, quantum walks, and classical continuous relaxations. We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement. This physical language, in combination with uniqueness results related to unitarity, allow us to identify some potential pitfalls from kinetic energy fundamentally opposing the goal of optimization. This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution. As an example, we explore the surprising deficiency of many quantum methods in solving uncoupled spin problems and how this is both predictive of performance on some more complex systems while immediately suggesting simple resolutions. Further examination of canonical problems like the Hamming ramp or bush of implications show that entanglement can be strictly detrimental to performance results from the underlying mechanism of solution in approaches like QAOA. Kinetic energy and graph Laplacian perspectives provide new insights to common initialization and optimal solutions in QAOA as well as new methods for more effective layerwise training. Connections to classical methods of continuous extensions, homotopy methods, and iterated rounding suggest new directions for research in quantum optimization. Throughout, we unveil many pitfalls and mechanisms in quantum optimization using a physical perspective, which aim to spur the development of novel quantum optimization algorithms and refinements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源