论文标题

Erdős-ko-Rado定理,以$ 2 $的改造家庭,有完美的匹配家庭

The Erdős-Ko-Rado theorem for $2$-intersecting families of perfect matchings

论文作者

Fallat, Shaun, Meagher, Karen, Shirazi, Mahsa N.

论文摘要

$ 2K $顶点的完整图表中的完美匹配是一组边缘,使得没有两个边缘具有一个共同的顶点,并且每个顶点都完全涵盖一次。据说两个完美的匹配是$ t $ - 如果它们至少有$ t $边缘的共同点。本文的主要结果是将著名的Erdős-Ko-Rado(EKR)定理\ cite {ekr}扩展到两个相互匹配的家庭,以适合所有$ K $的完美匹配。具体来说,对于$ k \ geq 3 $,一组2间交流的完美匹配,$ k_ {2k} $的最大尺寸的$(2k-5)(2k-5)(2k-7)(2k-7)\ cdots(1)$ $完美匹配。

A perfect matching in the complete graph on $2k$ vertices is a set of edges such that no two edges have a vertex in common and every vertex is covered exactly once. Two perfect matchings are said to be $t$-intersecting if they have at least $t$ edges in common. The main result in this paper is an extension of the famous Erdős-Ko-Rado (EKR) theorem \cite{EKR} to 2-intersecting families of perfect matchings for all values of $k$. Specifically, for $k\geq 3$ a set of 2-intersecting perfect matchings in $K_{2k}$ of maximum size has $(2k-5)(2k-7)\cdots (1)$ perfect matchings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源