论文标题
多模式的无噪声线性放大器
Noiseless Linear Amplifiers for Multimode States
论文作者
论文摘要
在创建纠缠时伪造的宽带量子光脉冲中不同频率分量之间的纠缠结构是实用许多多部分量子信息应用的有希望的途径。但是,此类应用的可伸缩性在很大程度上受到光子损失引起的纠缠变质的限制。打击这种损失的一种有希望的方法是无噪声线性扩增。但是,尽管有各种程序可以在单模状态上实现无噪声线性扩增,但迄今为止,尚未对携带多模结构的量子状态进行无噪声线性扩增提出实现。在这项工作中,我们缩小了这一差距,提出了一种带有光子催化(PC)的新型无噪声线性放大器(NLA),即PC-NLA。构建了使用量子剪刀(QS),QS-NLA的现有NLA的多模版本,然后我们展示了PC-NLA如何与QS-NLA兼容,即使前者使用了后者的一半。然后,我们将新开发的多模NLA框架应用于连续变化(CV)纠缠蒸馏的问题,确定纠缠的多模结构如何影响NLA的性能。与单模NLA分析不同,我们发现多模NLA仅作为CV纠缠蒸馏策略有效,当通道丢失超出某个阈值时 - 阈值很大程度上取决于多模结构。此处提供的结果对于使用宽带光脉冲中复杂的纠缠结构的多部分量子信息应用程序的实际实现非常有价值。
The entanglement structure between different frequency components within broadband quantum light pulses, forged at entanglement creation, represents a promising route to the practical delivery of many multipartite quantum information applications. However, the scalability of such applications is largely limited by the entanglement decoherence caused by photon loss. One promising method to combat such losses is noiseless linear amplification. However, while there have been various procedures that implement noiseless linear amplification on single-mode states, no realization has thus far been proposed for noiseless linear amplification on quantum states carrying a multimode structure. In this work we close this gap, proposing a novel Noiseless Linear Amplifier (NLA) with Photon Catalysis (PC), namely, the PC-NLA. Constructing a multimode version of an existing NLA that uses Quantum Scissors (QS), the QS-NLA, we then show how the PC-NLA is compatible with the QS-NLA, even though the former uses half the physical resources of the latter. We then apply our newly developed multimode NLA frameworks to the problem of Continuous-Variable (CV) entanglement distillation, determining how the multimode structure of the entanglement impacts the performance of the NLAs. Different from single-mode NLA analyses, we find that a multimode NLA is only effective as a CV entanglement distillation strategy when the channel loss is beyond some threshold - a threshold largely dependent on the multimode structure. The results provided here will be valuable for real-world implementations of multipartite quantum information applications that utilize complex entanglement structure within broadband light pulses.