论文标题

数据驱动库存政策的渐近分析

Asymptotic Analysis for Data-Driven Inventory Policies

论文作者

Zhang, Xun, Ye, Zhisheng, Haskell, William B.

论文摘要

我们在数据驱动的环境中研究了定期审查随机库存控制,在该环境中,零售商仅根据历史需求观察做出订购决策,而没有任何对需求的概率分布的了解。由于已知需求分布时,(S,S) - 政策是最佳的,因此我们研究了通过递归计算经验成本到GO的函数获得的数据驱动(S,S) - 政策的统计特性。该策略本质上是具有挑战性的,因为递归会及时导致估计误差的传播。在这项工作中,我们通过充分考虑错误传播来建立该数据驱动策略的渐近属性。首先,我们通过在现有研究中填补一些差距(由于误差的传播不足)来严格显示估计参数的一致性。在这种情况下,经验过程理论(EPT)不能直接应用于显示渐近正态性。要解释,估计参数的经验成本函数不是I.I.D。由于错误传播而导致的总和。我们的主要方法论创新来自I.I.D.多样本U过程的渐近表示。总和。该表示使我们能够应用EPT来得出估计参数的影响函数并建立联合渐近态性。基于这些结果,我们还提出了完全数据驱动的最佳预期成本估计器,并得出其渐近分布。我们证明了渐近结果的一些有用的应用,包括样本量确定和间隔估计。我们的数值模拟的结果符合我们的理论分析。依赖我们的理论分析。

We study periodic review stochastic inventory control in the data-driven setting where the retailer makes ordering decisions based only on historical demand observations without any knowledge of the probability distribution of the demand. Since an (s, S)-policy is optimal when the demand distribution is known, we investigate the statistical properties of the data-driven (s, S)-policy obtained by recursively computing the empirical cost-to-go functions. This policy is inherently challenging to analyze because the recursion induces propagation of the estimation error backwards in time. In this work, we establish the asymptotic properties of this data-driven policy by fully accounting for the error propagation. First, we rigorously show the consistency of the estimated parameters by filling in some gaps (due to unaccounted error propagation) in the existing studies. In this setting, empirical process theory (EPT) cannot be directly applied to show asymptotic normality. To explain, the empirical cost-to-go functions for the estimated parameters are not i.i.d. sums due to the error propagation. Our main methodological innovation comes from an asymptotic representation for multi-sample U-processes in terms of i.i.d. sums. This representation enables us to apply EPT to derive the influence functions of the estimated parameters and to establish joint asymptotic normality. Based on these results, we also propose an entirely data-driven estimator of the optimal expected cost and we derive its asymptotic distribution. We demonstrate some useful applications of our asymptotic results, including sample size determination and interval estimation. The results from our numerical simulations conform to our theoretical analysis.lations conform to our theoretical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源