论文标题
均质等离子体中共振波颗粒不稳定性的准线性扩散模型
A Quasi-Linear Diffusion Model for Resonant Wave-Particle Instability in Homogeneous Plasma
论文作者
论文摘要
在本文中,我们开发了一个模型来描述准中性等离子体中的广义波颗粒不稳定性。我们通过表达任意不稳定和谐振波模式为高斯波数据包来分析粒子的准线性扩散方程,从而使相对于背景磁场的任意传播方向进行了任意传播方向。我们表明,高斯波数据包的局部能量密度决定了速度空间范围,其中显性波粒子不稳定性和反作用阻尼的贡献是有效的。此外,我们得出了一个关系,描述了在波粒子不稳定性和阻尼之间的相互作用的作用下,速度空间中谐振颗粒的扩散轨迹。对于我们理论模型的数值计算,我们基于曲柄 - 尼科尔森方案开发了一种数学方法,以求解完整的准线性扩散方程。我们的数值分析解决了速度分布函数的时间演变,在主要波颗粒不稳定性和抵消阻尼的作用下,与我们的理论描述很好地一致。作为一种应用,我们使用模型来研究斜快磁通/惠斯勒的不稳定性,这被认为是太阳风中Strahl电子的散射机制。此外,我们通过数值求解完整的fokker-planck方程,以计算电子 - 斯特拉尔分布函数的时间演变,这是在coulomb碰撞与核心电子和质子的作用下,在斜快速磁通剂的无碰撞作用之后
In this paper, we develop a model to describe the generalized wave-particle instability in a quasi-neutral plasma. We analyze the quasi-linear diffusion equation for particles by expressing an arbitrary unstable and resonant wave mode as a Gaussian wave packet, allowing for an arbitrary direction of propagation with respect to the background magnetic field. We show that the localized energy density of the Gaussian wave packet determines the velocity-space range in which the dominant wave-particle instability and counter-acting damping contributions are effective. Moreover, we derive a relation describing the diffusive trajectories of resonant particles in velocity space under the action of such an interplay between the wave-particle instability and damping. For the numerical computation of our theoretical model, we develop a mathematical approach based on the Crank-Nicolson scheme to solve the full quasi-linear diffusion equation. Our numerical analysis solves the time evolution of the velocity distribution function under the action of a dominant wave-particle instability and counteracting damping and shows a good agreement with our theoretical description. As an application, we use our model to study the oblique fast-magnetosonic/whistler instability, which is proposed as a scattering mechanism for strahl electrons in the solar wind. In addition, we numerically solve the full Fokker-Planck equation to compute the time evolution of the electron-strahl distribution function under the action of Coulomb collisions with core electrons and protons after the collisionless action of the oblique fast-magnetosonic/whistler instability.