论文标题

COVID-19大流行的物理学知识的机器学习:遵守八个国家的社会疏远和短期预测

Physics-informed machine learning for the COVID-19 pandemic: Adherence to social distancing and short-term predictions for eight countries

论文作者

Barmparis, G. D., Tsironis, G. P.

论文摘要

Covid-19在2020年上半年的最初阶段的传播通过大多数国家施加的社会疏远度量缩小或更少的程度。在这项工作中,我们通过机器学习技术直接链接,在一个国家 /地区的感染数据与一个表示社会疏远有效性的单个数字。我们假设标准的SIR模型对扩散动态进行了合理的描述,因此可以通过在外部施加的时间依赖性感染率来建模社会疏远方面。我们使用指数ANSATZ来分析SIR模型,找到与时间无关的感染率的精确解决方案,并为时间依赖性感染率提供一个简单的一阶微分方程,这是感染人群的函数。使用来自八个国家的“第一波”感染的受感染数量数据,并通过物理知识的机器学习,我们提取了导致特定感染的社会距离的线性依赖程度。我们发现,在两个极端是希腊,一侧的衰减斜率最高,另一侧的衰变斜坡实际上是平坦的“衰减”。斜坡的层次结构与每个国家大流行遏制的有效性兼容。最后,我们在分析期结束后使用数据训练网络,并对感染的当前阶段进行为期一周的预测,这些预测似乎非常接近实际感染值。

The spread of COVID-19 during the initial phase of the first half of 2020 was curtailed to a larger or lesser extent through measures of social distancing imposed by most countries. In this work, we link directly, through machine learning techniques, infection data at a country level to a single number that signifies social distancing effectiveness. We assume that the standard SIR model gives a reasonable description of the dynamics of spreading, and thus the social distancing aspect can be modeled through time-dependent infection rates that are imposed externally. We use an exponential ansatz to analyze the SIR model, find an exact solution for the time-independent infection rate, and derive a simple first-order differential equation for the time-dependent infection rate as a function of the infected population. Using infected number data from the "first wave" of the infection from eight countries, and through physics-informed machine learning, we extract the degree of linear dependence in social distancing that led to the specific infections. We find that in the two extremes are Greece, with the highest decay slope on one side, and the US on the other with a practically flat "decay". The hierarchy of slopes is compatible with the effectiveness of the pandemic containment in each country. Finally, we train our network with data after the end of the analyzed period, and we make week-long predictions for the current phase of the infection that appear to be very close to the actual infection values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源