论文标题
鲁棒生成潜在动力学的异质不确定性
Heteroscedastic Uncertainty for Robust Generative Latent Dynamics
论文作者
论文摘要
从一系列高维观测中学习或识别动力学是在许多领域(包括增强学习和控制)的艰难挑战。最近通过潜在动力学从生成的角度研究了这个问题:高维观测结果嵌入到可以学习动力学的较低维空间中。尽管取得了一些成功,但尚未将潜在动力学模型应用于现实世界的机器人系统,在这些机器人系统中,学到的表示形式必须适合各种感知混杂和噪声源。在本文中,我们提出了一种共同学习潜在状态表示的方法以及在感知困难条件下的长期计划和闭环控制的相关动力。作为我们的主要贡献,我们描述了我们的表示如何能够通过检测新颖或分布(OOD)输入来捕获测试时间异质的或特异性不确定性的概念。我们介绍了有关两个基于图像的任务的预测和控制实验的结果:一个模拟的摆平衡任务和实现任务的现实世界机器人操纵器。我们证明,与仅在不同程度的输入降解的情况下,模型仅假定均质的不确定性,我们的模型可产生更准确的预测和表现出改善的控制性能。
Learning or identifying dynamics from a sequence of high-dimensional observations is a difficult challenge in many domains, including reinforcement learning and control. The problem has recently been studied from a generative perspective through latent dynamics: high-dimensional observations are embedded into a lower-dimensional space in which the dynamics can be learned. Despite some successes, latent dynamics models have not yet been applied to real-world robotic systems where learned representations must be robust to a variety of perceptual confounds and noise sources not seen during training. In this paper, we present a method to jointly learn a latent state representation and the associated dynamics that is amenable for long-term planning and closed-loop control under perceptually difficult conditions. As our main contribution, we describe how our representation is able to capture a notion of heteroscedastic or input-specific uncertainty at test time by detecting novel or out-of-distribution (OOD) inputs. We present results from prediction and control experiments on two image-based tasks: a simulated pendulum balancing task and a real-world robotic manipulator reaching task. We demonstrate that our model produces significantly more accurate predictions and exhibits improved control performance, compared to a model that assumes homoscedastic uncertainty only, in the presence of varying degrees of input degradation.