论文标题

通过脑电图分析回顾机器学习算法,用于脑部中风诊断和预后

Review of Machine Learning Algorithms for Brain Stroke Diagnosis and Prognosis by EEG Analysis

论文作者

Hosseini, Mohammad-Parsa, Hemingway, Cecilia, Madamba, Jerard, McKee, Alexander, Ploof, Natalie, Schuman, Jennifer, Voss, Elliot

论文摘要

目前,中风是美国成人残疾的主要原因。传统的治疗和康复选择,例如物理疗法和组织纤溶酶原激活剂的有效性和恢复患者迁移率和功能的能力受到限制。结果,有机会大大改善中风的治疗方法。机器学习,特别是利用脑部计算机界面(BCIS)来帮助患者恢复神经系统途径或与电子假体有效通信的技术,当应用于中风诊断和康复时,会显示出令人鼓舞的结果。在这篇综述中,根据他们的成功诊断或中风康复的成功应用,对设计和实施BCI进行中风患者的治疗的消息来源进行了评估和分类。解决并与BCI技术相结合的各种机器学习技术和算法表明,BCIS用于中风治疗是一个有前途且迅速扩大的领域。

Currently, strokes are the leading cause of adult disability in the United States. Traditional treatment and rehabilitation options such as physical therapy and tissue plasminogen activator are limited in their effectiveness and ability to restore mobility and function to the patient. As a result, there exists an opportunity to greatly improve the treatment for strokes. Machine learning, specifically techniques that utilize Brain-Computer Interfaces (BCIs) to help the patient either restore neurologic pathways or effectively communicate with an electronic prosthetic, show promising results when applied to both stroke diagnosis and rehabilitation. In this review, sources that design and implement BCIs for treatment of stroke patients are evaluated and categorized based on their successful applications for stroke diagnosis or stroke rehabilitation. The various machine learning techniques and algorithms that are addressed and combined with BCI technology show that the use of BCIs for stroke treatment is a promising and rapidly expanding field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源