论文标题

个性化的深度学习,用于医学物联网系统上的心室心律失常检测

Personalized Deep Learning for Ventricular Arrhythmias Detection on Medical IoT Systems

论文作者

Jia, Zhenge, Wang, Zhepeng, Hong, Feng, Ping, Lichuan, Shi, Yiyu, Hu, Jingtong

论文摘要

威胁生命的心律不齐(VA)是心脏猝死(SCD)的主要原因,这是美国自然死亡的最重要原因。植入式心脏扭曲器除颤器(ICD)是一种小型装置,该设备植入了SCD高风险作为预防治疗的患者。 ICD不断监视心脏内节律,并在检测威胁生命的VA时会产生冲击。传统方法通过在检测到的节奏上设定标准来检测VA。但是,这些方法遭受高不适当的冲击率,需要定期随访,以优化每个ICD接收者的标准参数。为了改善挑战,我们提出了针对医学物联网系统的基于深度学习的VA检测的个性化计算框架。该系统由心脏内和表面节律监测器以及用于数据上传,诊断和CNN模型个性化的云平台组成。我们对系统对心脏内和表面节律监测器进行实时推断。为了提高检测准确性,我们使监视器能够通过提出合作推断来协作进行VA检测。我们还根据计算框架为每个患者介绍了CNN个性化,以解决未标记和有限的节奏数据问题。与传统检测算法相比,所提出的方法可在VA节律检测方面达到可比的准确性,而不适当的冲击率降低了6.6%,而平均推理潜伏期则保持在71ms。

Life-threatening ventricular arrhythmias (VA) are the leading cause of sudden cardiac death (SCD), which is the most significant cause of natural death in the US. The implantable cardioverter defibrillator (ICD) is a small device implanted to patients under high risk of SCD as a preventive treatment. The ICD continuously monitors the intracardiac rhythm and delivers shock when detecting the life-threatening VA. Traditional methods detect VA by setting criteria on the detected rhythm. However, those methods suffer from a high inappropriate shock rate and require a regular follow-up to optimize criteria parameters for each ICD recipient. To ameliorate the challenges, we propose the personalized computing framework for deep learning based VA detection on medical IoT systems. The system consists of intracardiac and surface rhythm monitors, and the cloud platform for data uploading, diagnosis, and CNN model personalization. We equip the system with real-time inference on both intracardiac and surface rhythm monitors. To improve the detection accuracy, we enable the monitors to detect VA collaboratively by proposing the cooperative inference. We also introduce the CNN personalization for each patient based on the computing framework to tackle the unlabeled and limited rhythm data problem. When compared with the traditional detection algorithm, the proposed method achieves comparable accuracy on VA rhythm detection and 6.6% reduction in inappropriate shock rate, while the average inference latency is kept at 71ms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源