论文标题

通过差异模板估计进行自我监督的denoising:应用到光学相干断层扫描

Self-supervised Denoising via Diffeomorphic Template Estimation: Application to Optical Coherence Tomography

论文作者

Gisbert, Guillaume, Dey, Neel, Ishikawa, Hiroshi, Schuman, Joel, Fishbaugh, James, Gerig, Guido

论文摘要

光学相干断层扫描(OCT)在眼科研究和临床实践中都普遍存在。但是,OCT图像被噪音严重破坏,从而限制了它们的解释。当前的OCT DeOisers利用对噪声分布的假设或通过平均重复获取来训练深层监督的DeNoisers的目标。但是,最近的自我监督进步允许仅使用无需清洁目标作为基础真理的重复获取进行深入的denoing网络的培训,从而减轻了监督学习的负担。尽管自我监督方法具有明显的优势,但由于非自愿性眼运动,OCT在同一受试者的顺序扫描之间也显示出强大的结构变形,但它们的使用被排除在外。此外,重复的直接非线性比对诱导图像之间噪声的相关性。在本文中,我们提出了一个联合差异模板估计和DeNoisising框架,该框架可以使用自我监督的denoising进行运动变形重复采集,而无需经验记录其噪声实现。在降级OCT图像中实现了强大的定性和定量改进,并在任何可容纳多个暴露的成像方式中具有通用效用。

Optical Coherence Tomography (OCT) is pervasive in both the research and clinical practice of Ophthalmology. However, OCT images are strongly corrupted by noise, limiting their interpretation. Current OCT denoisers leverage assumptions on noise distributions or generate targets for training deep supervised denoisers via averaging of repeat acquisitions. However, recent self-supervised advances allow the training of deep denoising networks using only repeat acquisitions without clean targets as ground truth, reducing the burden of supervised learning. Despite the clear advantages of self-supervised methods, their use is precluded as OCT shows strong structural deformations even between sequential scans of the same subject due to involuntary eye motion. Further, direct nonlinear alignment of repeats induces correlation of the noise between images. In this paper, we propose a joint diffeomorphic template estimation and denoising framework which enables the use of self-supervised denoising for motion deformed repeat acquisitions, without empirically registering their noise realizations. Strong qualitative and quantitative improvements are achieved in denoising OCT images, with generic utility in any imaging modality amenable to multiple exposures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源