论文标题
Frobenius Nilhecke代数
Frobenius nilHecke algebras
论文作者
论文摘要
到任何Frobenius Superalgebra $ a $我们的我们的frobenius nilcoxeter代数和Frobenius Nilhecke代数。这些自然而然地通过Frobenius划分的差异算子在Frobenius多项式代数上。当$ a $是地面环时,我们的代数恢复了经典的尼尔科克西特和尼尔赫克(Nilhecke)代数。当$ a $是二维Clifford代数时,它们的莫里塔相当于奇数尼尔科克西特和奇怪的尼尔赫克代数。
To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobenius divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.