论文标题
复杂地形中空气温度预测的无缝多模型后处理
Seamless multi-model postprocessing for air temperature forecasts in complex topography
论文作者
论文摘要
统计后处理通常应用于纠正数值天气预测模型(NWP)的系统错误,并自动为最终用户产生校准的局部预测。后处理在复杂的地形中尤其重要,即使是最先进的高分辨率NWP系统也无法解决塑造当地天气条件的许多小规模过程。此外,统计后处理也可用于合并来自多个NWP系统的预测。在这里,我们评估了一种集合模型输出统计方法(EMOS)方法,以基于从对流的有限区域集合和中等范围的全局整体预测模型的组合结合使用短期合奏预测的组合。与仅处理高分辨率NWP相比,我们量化了这种方法的好处。我们在小时的时间尺度上校准并结合了2-m的2 m空气温度预测。相对于高分辨率NWP的直接模型输出,多模型EMOS方法(“混合EMOS”)能够将预测提高30 \%。对混合EMOS的详细评估表明,它的表现要优于8-12 \%的单模EMOS版本。山谷位置从模型组合中尤其是从模型组合中获利。所有预测变体在冬季(DJF)的表现最差,但是校准和模型组合可大大提高预测质量。
Statistical postprocessing is routinely applied to correct systematic errors of numerical weather prediction models (NWP) and to automatically produce calibrated local forecasts for end-users. Postprocessing is particularly relevant in complex terrain, where even state-of-the-art high-resolution NWP systems cannot resolve many of the small-scale processes shaping local weather conditions. In addition, statistical postprocessing can also be used to combine forecasts from multiple NWP systems. Here we assess an ensemble model output statistics (EMOS) approach to produce seamless temperature forecasts based on a combination of short-term ensemble forecasts from a convection-permitting limited-area ensemble and a medium-range global ensemble forecasting model. We quantify the benefit of this approach compared to only processing the high-resolution NWP. We calibrate and combine 2-m air temperature predictions for a large set of Swiss weather stations at the hourly time-scale. The multi-model EMOS approach ('Mixed EMOS') is able to improve forecasts by 30\% with respect to direct model output from the high-resolution NWP. A detailed evaluation of Mixed EMOS reveals that it outperforms either single-model EMOS version by 8-12\%. Valley location profit particularly from the model combination. All forecast variants perform worst in winter (DJF), however calibration and model combination improves forecast quality substantially.