论文标题
冠状孔中的加速和超音速密度波动:新生太阳风的特征
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
论文作者
论文摘要
静态背景中的慢磁声波为分析框架中的太阳大气提供了一种地震学工具。通过分析给定温度的冠状孔中羽状孔的电子数密度的时空变化,我们发现密度扰动在距离范围内的超音速速度在1.02至1.23太阳能放射线范围内加速。我们将它们解释为慢速的磁声波,以加速的亚音速流量在声速上传播。亚音速流的平均声音高度计算为1.27太阳半径。相对于全球太阳风,亚音速流的质量通量估计为44.1 $ \%$。因此,亚音速流量可能是新生的太阳风。换句话说,低电晕处的新生太阳风在成像观测中首次量化。基于解释,李子中存在的传播密度扰动可以用作逐渐加速太阳风的地震探测器。
Slow magnetoacoustic waves in a static background provide a seismological tool to probe the solar atmosphere in the analytic frame. By analyzing the spatiotemporal variation of the electron number density of plume structure in coronal holes above the limb for a given temperature, we find that the density perturbations accelerate with supersonic speeds in the distance range from 1.02 to 1.23 solar radii. We interpret them as slow magnetoacoustic waves propagating at about the sound speed with accelerating subsonic flows. The average sonic height of the subsonic flows is calculated to be 1.27 solar radii. The mass flux of the subsonic flows is estimated to be 44.1$\%$ relative to the global solar wind. Hence, the subsonic flow is likely to be the nascent solar wind. In other words, the evolution of the nascent solar wind in plumes at the low corona is quantified for the first time from imaging observations. Based on the interpretation, propagating density perturbations present in plumes could be used as a seismological probe of the gradually accelerating solar wind.