论文标题
通过交替的歧管近端延续方法,可靠的低级矩阵完成
Robust Low-rank Matrix Completion via an Alternating Manifold Proximal Gradient Continuation Method
论文作者
论文摘要
已经对计算机视觉,信号处理和机器学习应用进行了广泛的研究,已广泛研究了具有部分观察到的数据的稳健低级矩阵完成(RMC)或可靠观察到的数据的鲁棒主成分分析。这个问题旨在将部分观察到的矩阵分解为低级别矩阵和稀疏矩阵的叠加,稀疏矩阵捕获了矩阵的严重损坏的条目。一种广泛使用的解决RMC的方法是考虑一种凸公式,该配方将低级矩阵的核标准(以促进低级别)和稀疏基质的L1标准(以促进稀疏性)。在本文中,以一些关于低级矩阵完成和Riemannian优化的作品的激励,我们将此问题提出为Grassmann歧管上的非平滑Riemannian优化问题。这种新公式是可扩展的,因为低级别矩阵被分解为两个较小矩阵的乘法。然后,我们提出了一种交替的歧管近端梯度延续(AMANPGC)方法来解决所提出的新公式。严格分析了所提出的算法的收敛速率。据报道,综合数据和从监视视频中提取背景提取的真实数据的数值结果证明了拟议的新配方和算法的优势,而不是几种流行的现有方法。
Robust low-rank matrix completion (RMC), or robust principal component analysis with partially observed data, has been studied extensively for computer vision, signal processing and machine learning applications. This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix. A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity). In this paper, motivated by some recent works on low-rank matrix completion and Riemannian optimization, we formulate this problem as a nonsmooth Riemannian optimization problem over Grassmann manifold. This new formulation is scalable because the low-rank matrix is factorized to the multiplication of two much smaller matrices. We then propose an alternating manifold proximal gradient continuation (AManPGC) method to solve the proposed new formulation. The convergence rate of the proposed algorithm is rigorously analyzed. Numerical results on both synthetic data and real data on background extraction from surveillance videos are reported to demonstrate the advantages of the proposed new formulation and algorithm over several popular existing approaches.