论文标题

曲面界面特征值问题的未固定的增强子空间方法

A Nonnested Augmented Subspace Method for Eigenvalue Problems with Curved Interfaces

论文作者

Dang, Haikun, Xie, Hehu, Zhao, Gang, Zhou, Chenguang

论文摘要

在本文中,我们提出了一种未固定的增强子空间算法及其多级校正方法,用于解决曲面界面的特征值问题。增强的子空间算法和相应的多级校正方法是基于粗糙有限元元素空间设计的,该空间不是较小的有限元空间的子集。未固定的增强子空间方法可以将最佳网格上的特征值问题转换为相同网格和小规模特征值问题的求解线性方程。提供了相应的理论分析和数值实验,以证明所提出的算法的效率。

In this paper, we present a nonnested augmented subspace algorithm and its multilevel correction method for solving eigenvalue problems with curved interfaces. The augmented subspace algorithm and the corresponding multilevel correction method are designed based on a coarse finite element space which is not the subset of the finer finite element space. The nonnested augmented subspace method can transform the eigenvalue problem solving on the finest mesh to the solving linear equation on the same mesh and small scale eigenvalue problem on the low dimensional augmented subspace. The corresponding theoretical analysis and numerical experiments are provided to demonstrate the efficiency of the proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源