论文标题
城市环境中的多代理覆盖范围
Multi-Agent Coverage in Urban Environments
论文作者
论文摘要
我们研究在城市环境中自动监测和巡逻的多代理覆盖算法。我们考虑一个场景,其中一组飞行代理团队使用朝下的摄像头(或类似传感器)来观察街道层面建筑物外的环境。建筑物被认为是阻碍运动的障碍,并且假定摄像机在最大高度之上无效。我们研究了与这种情况相关的多代理城市覆盖范围问题,包括:(1)静态多代理城市覆盖范围,其中预计代理人可以从静态位置观察环境,以及(2)动态的多代理城市覆盖范围,在该环境中连续移动环境。我们通过实验评估了六种不同的多代理覆盖方法,包括:三种类型的颈椎覆盖范围(以不同的方式避免建筑物),割草机扫荡,基于Voronoi区域的控制以及一种天真的网格方法。我们在四种类型的城市环境[低密度,高密度] X [短密度,高建筑物,高建筑物,高建筑物,高建筑物,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,高密度,,,地量,覆盖率,,复兴,,地位,百分比为单位,评估百分比为单位,覆盖率,复兴的时间百分比,覆盖率,复兴的时间百分比(覆盖率),评估所有算法评估所有算法。我们认为这是城市环境中这些方法的第一个广泛比较。我们的结果强调了静态和动态方法的相对性能如何根据团队规模与搜索区域的比率进行变化,以及相对效应的相对效果,即城市环境的不同特征(高,短,短,密集,稀疏,稀疏,混合)对每种算法具有。
We study multi-agent coverage algorithms for autonomous monitoring and patrol in urban environments. We consider scenarios in which a team of flying agents uses downward facing cameras (or similar sensors) to observe the environment outside of buildings at street-level. Buildings are considered obstacles that impede movement, and cameras are assumed to be ineffective above a maximum altitude. We study multi-agent urban coverage problems related to this scenario, including: (1) static multi-agent urban coverage, in which agents are expected to observe the environment from static locations, and (2) dynamic multi-agent urban coverage where agents move continuously through the environment. We experimentally evaluate six different multi-agent coverage methods, including: three types of ergodic coverage (that avoid buildings in different ways), lawn-mower sweep, voronoi region based control, and a naive grid method. We evaluate all algorithms with respect to four performance metrics (percent coverage, revist count, revist time, and the integral of area viewed over time), across four types of urban environments [low density, high density] x [short buildings, tall buildings], and for team sizes ranging from 2 to 25 agents. We believe this is the first extensive comparison of these methods in an urban setting. Our results highlight how the relative performance of static and dynamic methods changes based on the ratio of team size to search area, as well the relative effects that different characteristics of urban environments (tall, short, dense, sparse, mixed) have on each algorithm.