论文标题
多中性组织病理学数据集的孤立联盟学习
Siloed Federated Learning for Multi-Centric Histopathology Datasets
论文作者
论文摘要
虽然联合学习是对分布式敏感数据集训练深度学习模型的一种有前途的方法,但它给机器学习带来了新的挑战,尤其是当在多中心数据异质性的医疗领域应用时。本文以先前的领域适应性作用为基础,提出了一种新型的联合学习方法,通过引入本地统计批处理(BN)层,用于深度学习体系结构,从而导致了经过协作训练但中心特定的模型。该策略提高了数据异质性的鲁棒性,同时还通过不共享中心特异性层激活统计量来降低信息泄漏的可能性。我们基准基于从Camelyon16和Camelyon17数据集提取的肿瘤组织病理学图像贴片分类的建议方法。我们表明,我们的方法与以前的最新方法相比,尤其是在跨数据集的转移学习中。
While federated learning is a promising approach for training deep learning models over distributed sensitive datasets, it presents new challenges for machine learning, especially when applied in the medical domain where multi-centric data heterogeneity is common. Building on previous domain adaptation works, this paper proposes a novel federated learning approach for deep learning architectures via the introduction of local-statistic batch normalization (BN) layers, resulting in collaboratively-trained, yet center-specific models. This strategy improves robustness to data heterogeneity while also reducing the potential for information leaks by not sharing the center-specific layer activation statistics. We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets. We show that our approach compares favorably to previous state-of-the-art methods, especially for transfer learning across datasets.