论文标题
第一个U-NET层包含比最后一个信息更多的特定信息
First U-Net Layers Contain More Domain Specific Information Than The Last Ones
论文作者
论文摘要
MRI扫描显着取决于扫描方案,因此,数据收集机构。临床部位之间的这些变化导致在看不见的结构域上的CNN分割质量急剧下降。最近提出的MRI域适应方法的许多最近使用的CNN层可抑制域移位。同时,MRI变异性的核心表现是图像强度的相当多样性。我们假设可以通过修改第一层而不是最后一个层来消除这些差异。为了验证这个简单的想法,我们对六个域中的脑MRI扫描进行了一系列实验。我们的结果表明,即使对于简单的大脑提取分段任务,域迁移也可能会恶化质量(表面骰子得分从0.85-0.89降至0.09); 2)第一层的微调显着优于几乎所有监督域适应设置中最后一层的微调。此外,如果严格受到限制,对第一层的微调比整个网络的微调量更好。
MRI scans appearance significantly depends on scanning protocols and, consequently, the data-collection institution. These variations between clinical sites result in dramatic drops of CNN segmentation quality on unseen domains. Many of the recently proposed MRI domain adaptation methods operate with the last CNN layers to suppress domain shift. At the same time, the core manifestation of MRI variability is a considerable diversity of image intensities. We hypothesize that these differences can be eliminated by modifying the first layers rather than the last ones. To validate this simple idea, we conducted a set of experiments with brain MRI scans from six domains. Our results demonstrate that 1) domain-shift may deteriorate the quality even for a simple brain extraction segmentation task (surface Dice Score drops from 0.85-0.89 even to 0.09); 2) fine-tuning of the first layers significantly outperforms fine-tuning of the last layers in almost all supervised domain adaptation setups. Moreover, fine-tuning of the first layers is a better strategy than fine-tuning of the whole network, if the amount of annotated data from the new domain is strictly limited.