论文标题
不规则的Eguchi-Hanson型指标及其孤子类似物
Irregular Eguchi-Hanson type metrics and their soliton analogues
论文作者
论文摘要
我们验证了Kaehler-Einstein指标和Kaehler-Icci孤子的动量构建的零部分的扩展,该构建的总空间y的to fano歧管的正构成线束的总空间可能是不规则的Sasaki-ienstein量子。更确切地说,我们表明沿零部分的扩展指标具有可以扩展到y的表达式,限制了相关的单位圆圈束,作为一个横向的kaehler-einstein(sasakian eta-einstein)在reeb流动方向上缩放的度量标准,并从riemann siberserion salded sasasakian zasakian et sasasakian et eysentric terric Metric Metric Metric Metric Metric Metric Metric Metric Metric Metric Metric Metric。
We verify the extension to the zero section of momentum construction of Kaehler-Einstein metrics and Kaehler-Ricci solitons on the total space Y of positive rational powers of the canonical line bundle of toric Fano manifolds with possibly irregular Sasaki-Einstein metrics. More precisely, we show that the extended metric along the zero section has an expression which can be extended to Y, restricts to the associated unit circle bundle as a transversely Kaehler-Einstein (Sasakian eta-Einstein) metric scaled in the Reeb flow direction, and that there is a Riemannian submersion from the scaled Sasakian eta-Einstein metric to the induced metric of the zero section.