论文标题
强大的冷冻EM图像Denoising的生成对抗网络
Generative Adversarial Networks for Robust Cryo-EM Image Denoising
论文作者
论文摘要
冷冻电子显微镜(Cryo-EM)在大分子结构测定方面流行。但是,冷冻EM检测到的2D图像具有很高的噪声,并且通常与多种异质构象或污染混合在一起,对DeNosing构成了挑战。当图像的信号 - 噪声比例(SNR)微薄时,传统的图像降级方法无法很好地消除Cryo-Em图像噪声。因此,希望开发新的有效剥离技术来促进进一步的研究,例如3D重建,2D构象分类等。在本文中,我们通过关节自动编码器和生成对抗网络(GAN)方法来解决Cryo-EM中强大的图像降解问题。配备了可靠的$ \ ell_1 $自动编码器和一些可靠的$β$ - gans设计,可以稳定gan的训练,并实现使用低SNR数据的鲁棒性deNosing的最先进性能,并违反可能的信息污染。该方法通过在热水生RNA聚合酶(RNAP)上的异质构象数据集和均质核糖体数据集(Empire-10028)上的同质数据集进行评估构象聚类。这些结果表明,我们提出的方法为Cryo-EM 2D图像denoisising提供了有效的工具。我们的代码可在“ https://github.com/ghl1995/denoise-gan-in-in-cryo-em”中获得。
The cryo-electron microscopy (Cryo-EM) becomes popular for macromolecular structure determination. However, the 2D images which Cryo-EM detects are of high noise and often mixed with multiple heterogeneous conformations or contamination, imposing a challenge for denoising. Traditional image denoising methods can not remove Cryo-EM image noise well when the signal-noise-ratio (SNR) of images is meager. Thus it is desired to develop new effective denoising techniques to facilitate further research such as 3D reconstruction, 2D conformation classification, and so on. In this paper, we approach the robust image denoising problem in Cryo-EM by a joint Autoencoder and Generative Adversarial Networks (GAN) method. Equipped with robust $\ell_1$ Autoencoder and some designs of robust $β$-GANs, one can stabilize the training of GANs and achieve the state-of-the-art performance of robust denoising with low SNR data and against possible information contamination. The method is evaluated by both a heterogeneous conformational dataset on the Thermus aquaticus RNA Polymerase (RNAP) and a homogenous dataset on the Plasmodium falciparum 80S ribosome dataset (EMPIRE-10028), in terms of Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), as well as heterogeneous conformation clustering. These results suggest that our proposed methodology provides an effective tool for Cryo-EM 2D image denoising. Our code is available in "https://github.com/ghl1995/denoise-gan-in-cryo-em".