论文标题
时间超图模型探索的视觉分析
Visual Analytics for Temporal Hypergraph Model Exploration
论文作者
论文摘要
从生物学中的基因相互作用到计算机网络再到社交媒体,许多过程都可以比常规图更精确地建模为时间超图。这是因为HyperGraphs通过扩展边缘连接任意数量的顶点来概括图,从而可以更准确地描述复杂的关系并随着时间的推移预测其行为。但是,这种基于超图的预测模型的交互式探索和无缝完善仍然构成了重大挑战。我们贡献了Hyper-Matrix,这是一种新型的视觉分析技术,通过机器学习和交互式可视化之间的紧密耦合来应对这一挑战。特别是,该技术将几何深度学习模型作为问题特异性模型的蓝图结合在一起,同时将基于图的基于图和类别的数据的可视化与有效的用户驱动的HyperGraph模型探索的相互作用的新型组合整合在一起。为了消除苛刻的上下文开关并确保可扩展性,我们基于矩阵的可视化提供了跨多个语义变焦的钻孔功能,从模型预测的概述到内容。我们促进了基于交互式用户启动的相关连接和组的重点分析,用于过滤和搜索任务,动态修改的分区层次结构,各种矩阵重新排序技术以及交互式模型反馈。我们在案例研究中评估了我们的技术,并通过使用现实世界的互联网论坛通信数据与执法专家进行形成性评估。结果表明,我们的方法在可扩展性和适用性方面超过了现有的解决方案,可以纳入域知识,并允许快速搜索空间遍历。通过该技术,我们为各种域中的时间超图的视觉分析铺平了道路。
Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains.