论文标题
在原子频段排列下,无监督的拓扑指数的可解释学习不变
Unsupervised interpretable learning of topological indices invariant under permutations of atomic bands
论文作者
论文摘要
具有内部或空间对称性(例如粒子孔或反转)的多波段绝缘汉密尔顿人可能具有拓扑结合的愚蠢原子限制(动量独立于动量)汉密尔顿人的部门。我们提出了一种基于神经网络的协议,用于查找拓扑相关的指标,这些指标在这种微不足道的原子限制性汉密尔顿人之间的转换下是不变的,因此对应于带绝缘子的标准分类。这项工作扩展了参考文献中介绍的无监督学习的“拓扑数据增强”方法。 [1]还通过概括和简化数据生成方案并引入适合$ z_n $分类的神经网络的特殊“ mod”层。训练数据的集合是通过以保持连续性的离散表示的方式将种子对象变形来生成的。为了将学习集中在拓扑相关的指标上,在变形过程之前,我们用一组完全尊重对称性的琐碎的原子带堆叠种子Bloch Hamiltonians。然后,所获得的数据集用于训练一个可解释的神经网络,该网络专门设计,旨在通过学习物理相关的动量空间数量,即使在结晶对称性类别中也是如此。
Multi-band insulating Bloch Hamiltonians with internal or spatial symmetries, such as particle-hole or inversion, may have topologically disconnected sectors of trivial atomic-limit (momentum-independent) Hamiltonians. We present a neural-network-based protocol for finding topologically relevant indices that are invariant under transformations between such trivial atomic-limit Hamiltonians, thus corresponding to the standard classification of band insulators. The work extends the method of "topological data augmentation" for unsupervised learning introduced in Ref. [1] by also generalizing and simplifying the data generation scheme and by introducing a special "mod" layer of the neural network appropriate for $Z_n$ classification. Ensembles of training data are generated by deforming seed objects in a way that preserves a discrete representation of continuity. In order to focus the learning on the topologically relevant indices, prior to the deformation procedure we stack the seed Bloch Hamiltonians with a complete set of symmetry-respecting trivial atomic bands. The obtained datasets are then used for training an interpretable neural network specially designed to capture the topological properties by learning physically relevant momentum space quantities, even in crystalline symmetry classes.