论文标题

在拥挤的场景中,改进的扩张卷积网络,用于牛群计数

An Improved Dilated Convolutional Network for Herd Counting in Crowded Scenes

论文作者

Hamrouni, Soufien, Ghazzai, Hakim, Menouar, Hamid, Massoud, Yahya

论文摘要

在当代时代,利用计算机视觉的人群管理技术是广泛的。这些方法存在许多与安全相关的应用程序,包括但不限于:跟随一系列人的流程和监视大型聚会。在本文中,我们提出了一个由两个串联的卷积深度学习体系结构组成的精确监视系统。第一部分称为前端,负责转换双维信号并提供高级功能。第二部分称为后端,是用于替换合并层的扩张卷积神经网络(CNN)。它负责扩大整个网络的接收领域,并将第一个网络提供的描述符转换为显着图,该图将用于估计高度拥挤的图像中的人数。我们还建议利用遗传算法,以便在后端找到优化的扩张率构型。所提出的模型显示出比最新方法快30 \%的收敛速度。还表明,将其应用于上海数据集时,它达到20 \%降低了平均绝对误差(MAE)。

Crowd management technologies that leverage computer vision are widespread in contemporary times. There exists many security-related applications of these methods, including, but not limited to: following the flow of an array of people and monitoring large gatherings. In this paper, we propose an accurate monitoring system composed of two concatenated convolutional deep learning architectures. The first part called Front-end, is responsible for converting bi-dimensional signals and delivering high-level features. The second part, called the Back-end, is a dilated Convolutional Neural Network (CNN) used to replace pooling layers. It is responsible for enlarging the receptive field of the whole network and converting the descriptors provided by the first network to a saliency map that will be utilized to estimate the number of people in highly congested images. We also propose to utilize a genetic algorithm in order to find an optimized dilation rate configuration in the back-end. The proposed model is shown to converge 30\% faster than state-of-the-art approaches. It is also shown that it achieves 20\% lower Mean Absolute Error (MAE) when applied to the Shanghai data~set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源