论文标题

$ sl_n(\ mathbb {k})$ lattices lot-Global-rigities $

Local-to-Global-rigidity of lattices in $SL_n(\mathbb{K})$

论文作者

Escalier, Amandine

论文摘要

如果存在$ r> 0 $,则顶点传递图$ \ MATHCAL {G} $,称为局部到全球刚性,以使每个其他radius $ r $的球都等于radius $ r $ in of Radius $ r $ in $ \ rabscal {G} $覆盖$ \ Mathcal of $ \ nathcal of $ \ nathcal of。 $ psl_n(\ Mathbb {k})$带有$ n \ geq 4 $和$ \ mathbb {k} $的非Archimedean特征特征零的局部领域。在本文中,我们将这些刚性属性扩展到图形的Quasi-Isote for nottion for n to fortice, $ sl_n(\ mathbb {k})$。演示是证明建筑物本地结构的机会。我们表明,如果我们修复了$ psl_n(\ mathbb {k})$ - 轨道,则顶点由该轨道中的相邻顶点唯一确定。

A vertex-transitive graph $\mathcal{G}$ is called Local-to-Global rigid if there exists $R>0$ such that every other graph whose balls of radius $R$ are isometric to the balls of radius $R$ in $\mathcal{G}$ is covered by $\mathcal{G}$. An example of such a graph is given by the Bruhat-Tits building of $PSL_n(\mathbb{K})$ with $n\geq 4$ and $\mathbb{K}$ a non-Archimedean local field of characteristic zero.. In this paper we extend this rigidity property to a class of graphs quasi-isometric to the building including torsion-free lattices of $SL_n(\mathbb{K})$. The demonstration is the occasion to prove a result on the local structure of the building. We show that if we fix a $PSL_n(\mathbb{K})$-orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this orbit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源