论文标题

非偏度双通极化法的耐受性分析

Tolerance analysis of non-depolarizing double-pass polarimetry

论文作者

Yu, Yimin, Baba-Ali, Nabila, Gallatin, Gregg M

论文摘要

双通极光法测量样品在极角和所有方位角范围内的极化特性。在这里,我们在校准和测量程序中介绍了所有光学元素的公差分析,以预测双通偏振仪的灵敏度。校准程序由基于特征值校准方法(ECM)的Mueller矩阵描述。我们来自Mueller矩阵描述中的校准和测量结果的数值结果,其公差受到系统和随机噪声的限制,从市售的硬件组件的规格中,与以前的实验观察非常吻合。此外,通过使用定向Zernike多项式(OZP),这是Jones矩阵形式主义的扩展,类似于Zernike多项式波前的扩展,在测试中,非depolarlization样品的极化特性的瞳孔分布扩展了。使用最大25 $^{\ circ} $不等的极角度,我们预测使用相应的OZP系数的均方根(RMS),用于降压的敏感性为0.5%,延迟0.3 $^{\ circ} $作为误差的量度。该数值工具提供了一种方法,可以通过错误预算来进一步提高极化器的敏感性,并使用具有更好精度的组件替换敏感组件。

Double-pass polarimetry measures the polarization properties of a sample over a range of polar angles and all azimuths. Here, we present a tolerance analysis of all the optical elements in both the calibration and measurement procedures to predict the sensitivities of the double-pass polarimeter. The calibration procedure is described by a Mueller matrix based on the eigenvalue calibration method (ECM). Our numerical results from the calibration and measurement in the Mueller matrix description with tolerances limited by systematic and stochastic noise from specifications of commercially available hardware components are in good agreement with previous experimental observations. Furthermore, by using the orientation Zernike polynomials (OZP) which are an extension of the Jones matrix formalism, similar to the Zernike polynomials wavefront expansion, the pupil distribution of the polarization properties of non-depolarizing samples under test are expanded. Using polar angles ranging up to 25$^{\circ}$, we predict a sensitivity of 0.5% for diattenuation and 0.3$^{\circ}$ for retardance using the root mean square (RMS) of the corresponding OZP coefficients as a measure of the error. This numerical tool provides an approach for further improving the sensitivities of polarimeters via error budgeting and replacing sensitive components with those having better precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源