论文标题

半监督的学习与甘斯一起用于无设备的指纹室内定位

Semi-Supervised Learning with GANs for Device-Free Fingerprinting Indoor Localization

论文作者

Chen, Kevin M., Chang, Ronald Y.

论文摘要

无设备无线室内本地化是物联网(IoT)的关键启用技术。基于指纹的室内定位技术是一种常用的解决方案。本文提出了一个半监督,生成的对抗网络(GAN)的无设备指纹室内定位系统。提出的系统使用少量的标记数据和大量未标记的数据(即半监视),从而大大减少了昂贵的数据标记工作。实验结果表明,与最先进的监督方案相比,所提出的半监督系统以相等,足够的标记数据和相等,相等,高度有限的标记数据具有相同数量的标记数据可比性的性能。此外,提议的半监督系统将其性能保留在广泛的标记数据量中。在视觉上检查和讨论了基于GAN的系统的生成器,鉴别器和分类器模型之间的相互作用。还提供了对拟议系统的数学描述。

Device-free wireless indoor localization is a key enabling technology for the Internet of Things (IoT). Fingerprint-based indoor localization techniques are a commonly used solution. This paper proposes a semi-supervised, generative adversarial network (GAN)-based device-free fingerprinting indoor localization system. The proposed system uses a small amount of labeled data and a large amount of unlabeled data (i.e., semi-supervised), thus considerably reducing the expensive data labeling effort. Experimental results show that, as compared to the state-of-the-art supervised scheme, the proposed semi-supervised system achieves comparable performance with equal, sufficient amount of labeled data, and significantly superior performance with equal, highly limited amount of labeled data. Besides, the proposed semi-supervised system retains its performance over a broad range of the amount of labeled data. The interactions between the generator, discriminator, and classifier models of the proposed GAN-based system are visually examined and discussed. A mathematical description of the proposed system is also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源