论文标题
使用时间依赖性优化的二阶多体扰动理论研究NE原子的激光驱动的多电体动力学的研究
Study of laser-driven multielectron dynamics of Ne atom using time-dependent optimized second-order many-body perturbation theory
论文作者
论文摘要
我们使用明确依赖时间依赖性的优化二阶多体扰动方法(TD-EMP2)来计算NE的高谐波生成(HHG)光谱,强场电离和时间依赖性的偶极仪,其中轨道和放大均与时间相关。我们考虑具有很高强度的近红外(800 nm)和中红外(1200 nm)激光脉冲($ 5 \ times10^{14} $,$ 8 \ times10^{14} $,$ 1 \ times10^{15} {15} $ w/cm $^2 $),对于强度的实验,需要(21)。我们将TD-EMP2方法的结果与时间相关的完整空间自一致的场方法和时间相关的Hartree-fock方法进行了比较。此外,我们报告了所选的活性空间中TD-CC2方法的实现,这也是TD-CCSD方法的二阶近似,并且呈现时间依赖性偶极 - 摩擦和HHG光谱的结果,其强度为$ 5 \ times10^{13} {13} $ W/cm $ w/cm $ w/cm $^2 $ a Bean of 800 n mm of 800 nmment。发现在较高的激光强度的情况下,TD-CC2方法不稳定,并且不提供对物理特性的规格不变的描述,这使得TD-EMP2成为较大的化学系统,尤其是针对强场动力学的研究。获得的结果表明,TD-EMP2方法显示出中等的性能,高估了NE的响应,而TDHF低估了它。然而,值得注意的是,在时间依赖性扰动方法的框架内,可以稳定地计算这种高度非线性的非扰动现象,这是由于激光电子相互作用的非驱动性包含和轨道依赖性优化的轨道。
We calculate the high-harmonic generation (HHG) spectra, strong-field ionization, and time-dependent dipole-moment of Ne using explicitly time-dependent optimized second-order many-body perturbation method (TD-OMP2) where both orbitals and amplitudes are time-dependent. We consider near-infrared (800 nm) and mid-infrared (1200 nm) laser pulses with very high intensities ($5\times10^{14}$, $8\times10^{14}$ , and $1\times10^{15}$ W/cm$^2$), required for strong-field experiments with the high-ionization potential (21.6 eV) atom. We compare the result of the TD-OMP2 method with the time-dependent complete-active-space self-consistent field method and the time-dependent Hartree-Fock method. Further, we report the implementation of the TD-CC2 method within the chosen active space, which is also a second-order approximation to the TD-CCSD method, and present results of time-dependent dipole-moment and HHG spectra with an intensity of $5\times10^{13}$ W/cm$^2$ at a wavelength of 800 nm. It is found that the TD-CC2 method is not stable in the case with a higher laser intensity, and it does not provide a gauge-invariant description of the physical properties, which makes TD-OMP2 a superior choice to reach out to larger chemical systems, especially for the study of strong-field dynamics. The obtained results indicate that the TD-OMP2 method shows moderate performance, overestimating the response of Ne, while TDHF underestimates it. Nevertheless, it is remarkable that stable computation of such highly nonlinear nonperturbative phenomena is possible within the framework of time-dependent perturbation method, by virtue of the nonperturbative inclusion of the laser-electron interaction and time-dependent optimization of orbitals.