论文标题
使用卷积神经网络自发早产预测
Spontaneous preterm birth prediction using convolutional neural networks
论文作者
论文摘要
估计每年有1500万婴儿出生。由于早产并发症(PTB),每年约有100万儿童死亡。许多幸存者面临着一生的残疾,包括学习障碍以及视觉和听力问题。尽管对超声图像(US)的手动分析仍然很普遍,但由于其主观成分和在患者之间器官的形状和位置上的复杂变化而容易出现错误。在这项工作中,我们介绍了一个概念上简单的卷积神经网络(CNN),该卷积神经网络(CNN)训练有素,用于分割产前超声图像和为早产的目的进行分类。我们的方法有效地将不同类型的子宫颈段中的不同类型的子宫颈分段,同时基于没有人类监督的提取的图像特征来预测早产。我们采用了三个流行的网络模型:U-NET,完全卷积网络和DeepLabv3用于子宫颈分段任务。基于执行的结果和模型效率,我们决定通过添加一个并行分支以进行分类任务来扩展U-NET。提出的模型在由354 2D经阴道超声图像组成的数据集上进行了训练和评估,并以平均jaccard系数指数为0.923 $ \ pm $ 0.081和0.677 $ 0.677 $ \ pm $ 0.042的平均Jaccard系数指数达到了细分精度。与最先进的方法相比,我们的方法在基于经阴道超声图像的早产预测中获得了更好的结果。
An estimated 15 million babies are born too early every year. Approximately 1 million children die each year due to complications of preterm birth (PTB). Many survivors face a lifetime of disability, including learning disabilities and visual and hearing problems. Although manual analysis of ultrasound images (US) is still prevalent, it is prone to errors due to its subjective component and complex variations in the shape and position of organs across patients. In this work, we introduce a conceptually simple convolutional neural network (CNN) trained for segmenting prenatal ultrasound images and classifying task for the purpose of preterm birth detection. Our method efficiently segments different types of cervixes in transvaginal ultrasound images while simultaneously predicting a preterm birth based on extracted image features without human oversight. We employed three popular network models: U-Net, Fully Convolutional Network, and Deeplabv3 for the cervix segmentation task. Based on the conducted results and model efficiency, we decided to extend U-Net by adding a parallel branch for classification task. The proposed model is trained and evaluated on a dataset consisting of 354 2D transvaginal ultrasound images and achieved a segmentation accuracy with a mean Jaccard coefficient index of 0.923 $\pm$ 0.081 and a classification sensitivity of 0.677 $\pm$ 0.042 with a 3.49\% false positive rate. Our method obtained better results in the prediction of preterm birth based on transvaginal ultrasound images compared to state-of-the-art methods.