论文标题
通过组合组件应用程序的性能模型自动调整原位工作流程
In-situ Workflow Auto-tuning via Combining Performance Models of Component Applications
论文作者
论文摘要
原位并行工作流程通过流数据传输将多个组件应用程序(例如仿真和分析)逐渐发展。为了避免通过共享文件系统交换数据。由于可能的配置空间较大,因此,此类工作流程要具有挑战性地配置以达到最佳性能。专家经验很少足以确定最佳配置,并且由于获得机器学习模型的培训数据的高成本,现有的经验自动调整方法效率低下。由于组件相互作用,独立优化单个组件也是不可行的。我们在这里提出了一种新的自动调整方法,即基于组件的集合主动学习(CEAL),将机器学习技术与现场工作流程结构的知识相结合,以实现自动化工作流程配置以及有限的性能测量。
In-situ parallel workflows couple multiple component applications, such as simulation and analysis, via streaming data transfer. in order to avoid data exchange via shared file systems. Such workflows are challenging to configure for optimal performance due to the large space of possible configurations. Expert experience is rarely sufficient to identify optimal configurations, and existing empirical auto-tuning approaches are inefficient due to the high cost of obtaining training data for machine learning models. It is also infeasible to optimize individual components independently, due to component interactions. We propose here a new auto-tuning method, Component-based Ensemble Active Learning (CEAL), that combines machine learning techniques with knowledge of in-situ workflow structure to enable automated workflow configuration with a limited number of performance measurements.