论文标题

$ c(m,n)$ for $ν= -k $

The Ising correlation $C(M,N)$ for $ν=-k$

论文作者

Boukraa, S., Maillard, J-M., McCoy, B. M.

论文摘要

我们向普通伊斯(Painlev {é} vi sigma形式的方程式介绍了一般的低温和高温两点相关函数$ c(m,n)$,在特殊情况下,$ m \ m \ m \ leq n $在特殊情况下$ c $ν= -k $ where $ν= \,\ sinh 2e_h 2e_h/k_bt/k_bt/k__bt/\ sinh 2eh 2eh 2e_v/kbt $。更具体地说,根据两个整数$ m $和$ n $出现的四种不同的非线性ODE:这四种非线性ODE分别对应于分别区分低和高温,以及$ m+n $偶数或奇数。当$ν= -1/k $时,这四个不同的非线性ODE也适用于$ m \ ge n $。对于低温行相关函数$ c(0,n)$带$ n $奇数,我们再次为此选择的$ν= \,-k $条件展示,这是PainlevéVisigma函数的一个了不起的现象,是四个Painlevévivi vi sigma函数的总和,具有相同的okamoto parameters。我们在此$ν= \,-k $ case中显示$ t <t_c $,还有$ t> t_c $,$ c(m,n)$,$ m \ leq n $作为$ n \ times n $ n $ toeplitz clastigant。

We present Painlev{é} VI sigma form equations for the general Ising low and high temperature two-point correlation functions $ C(M,N)$ with $M \leq N $ in the special case $ν= -k$ where $ν= \, \sinh 2E_h/k_BT/\sinh 2E_v/k_BT$. More specifically four different non-linear ODEs depending explicitly on the two integers $M $ and $N$ emerge: these four non-linear ODEs correspond to distinguish respectively low and high temperature, together with $ M+N$ even or odd. These four different non-linear ODEs are also valid for $M \ge N$ when $ ν= -1/k$. For the low-temperature row correlation functions $ C(0,N)$ with $ N$ odd, we exhibit again for this selected $ν= \, -k$ condition, a remarkable phenomenon of a Painlevé VI sigma function being the sum of four Painlevé VI sigma functions having the same Okamoto parameters. We show in this $ν= \, -k$ case for $ T < T_c $ and also $ T > T_c$, that $ C(M,N)$ with $ M \leq N $ is given as an $ N \times N$ Toeplitz determinant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源