论文标题

随机$ k_k $ - 拆卸算法

Random $K_k$-removal algorithm

论文作者

Tian, Fang, Liu, Zi-Long, Pan, Xiang-Feng

论文摘要

一个有趣的问题是图形如何从某些受约束的随机图过程中发展,这是动态网络形成和演变中的基本机制。这里的问题是指随机$ k_k $ - 删除算法。对于固定的整数$ k \ geqslant 3 $,它以$ n \ rightarrow \ infty $ vertices上的完整图开始,然后迭代地删除了均匀选择的$ k_k $的边缘。该算法终止,一旦剩下$ k_k $ s,它也会生成一个线性$ k $均匀的超图。对于$ k = 3 $,显示最终图中的大小为$ n^{3/2+o(1)} $。在$ k \ geqslant 4 $的情况下,结果更少。在本文中,我们证明该算法中各种关键参数的确切预期轨迹到某些迭代中,因此该算法中的最终大小最多是$ n^{2-1/(k-1)-2 -2 -2)+O(1)} $ for $ k \ geqslant 4 $。我们还表明,界限是自然的障碍。

One interesting question is how a graph develops from some constrained random graph process, which is a fundamental mechanism in the formation and evolution of dynamic networks. The problem here is referred to the random $K_k$-removal algorithm. For a fixed integer $k\geqslant 3$, it starts with a complete graph on $n\rightarrow\infty$ vertices and iteratively removes the edges of an uniformly chosen $K_k$. This algorithm terminates once no $K_k$s remain and at the same time it generates one linear $k$-uniform hypergraph. For $k=3$, it was shown that the size in the final graph is $n^{3/2+o(1)}$. Less results are on the cases when $k\geqslant 4$. In this paper, we prove that the exact expected trajectories of various key parameters in the algorithm to some iteration such that the final size in the algorithm is at most $n^{2-1/(k(k-1)-2)+o(1)}$ for $k\geqslant 4$. We also show the bound is a natural barrier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源