论文标题
使用机器学习对HSC瞬变的光度分类
Photometric classification of HSC transients using machine learning
论文作者
论文摘要
技术的进步导致超新星(SN)发现迅速增加。从2016年秋季到2017年春季进行的Subaru/Hyper Suprime-CAM(HSC)瞬态调查产生了1824个SN候选人。这引起了对光谱随访的快速类型分类的需求,并促使我们使用具有高速公路层的深神经网络(DNN)开发机器学习算法。该机器是通过实际观察到的节奏和过滤器组合来训练的,以便我们可以直接将观察到的数据阵列输入到机器中,而无需任何解释。我们使用LSST分类挑战(深钻孔)的数据集测试了模型。我们的分类器为二进制分类(SN IA或非SN IA)的曲线(AUC)下的区域(AUC)分数为0.996,三级分类(SN IA,SN IBC或SN II)的精度为95.3%。将我们的二进制分类应用于HSC瞬态数据的AUC得分为0.925。自第一次检测以来,有两个星期的HSC数据,该分类器可实现78.1%的二进制分类精度,并且完整数据集的精度提高到84.2%。本文讨论了机器学习用于SN类型分类目的的潜在用途。
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need for fast type classification for spectroscopic follow-up and prompted us to develop a machine learning algorithm using a deep neural network (DNN) with highway layers. This machine is trained by actual observed cadence and filter combinations such that we can directly input the observed data array into the machine without any interpretation. We tested our model with a dataset from the LSST classification challenge (Deep Drilling Field). Our classifier scores an area under the curve (AUC) of 0.996 for binary classification (SN Ia or non-SN Ia) and 95.3% accuracy for three-class classification (SN Ia, SN Ibc, or SN II). Application of our binary classification to HSC transient data yields an AUC score of 0.925. With two weeks of HSC data since the first detection, this classifier achieves 78.1% accuracy for binary classification, and the accuracy increases to 84.2% with the full dataset. This paper discusses the potential use of machine learning for SN type classification purposes.