论文标题
工业互联网中的深度学习:潜力,挑战和新兴应用程序
Deep Learning in Industrial Internet of Things: Potentials, Challenges, and Emerging Applications
论文作者
论文摘要
物联网(IoT)的最新进步正在引起互连设备的扩散,从而实现了各种智能应用程序。这些大量的物联网设备产生了大量数据,这些数据进一步需要智能数据分析和处理方法,例如深度学习(DL)。值得注意的是,当在工业互联网(IIOT)中应用DL算法可以启用各种应用程序,例如智能组装,智能制造,有效的网络和事故检测和预防。因此,受这些众多应用的动机;在本文中,我们介绍了IIOT中DL的关键潜力。首先,我们回顾了各种DL技术,包括卷积神经网络,自动编码器和经常性神经网络,并在不同行业中使用。然后,我们概述了IIOT系统的大量DL用例,包括智能制造,智能计量,智能农业等。此外,我们将有关有效设计和适当实施DL-IOIT的一些研究挑战分类。最后,我们提出了一些未来的研究指示,以激发和激励该领域的进一步研究。
The recent advancements in the Internet of Things (IoT) are giving rise to the proliferation of interconnected devices, enabling various smart applications. These enormous number of IoT devices generates a large capacity of data that further require intelligent data analysis and processing methods, such as Deep Learning (DL). Notably, the DL algorithms, when applied in the Industrial Internet of Things (IIoT), can enable various applications such as smart assembling, smart manufacturing, efficient networking, and accident detection-and-prevention. Therefore, motivated by these numerous applications; in this paper, we present the key potentials of DL in IIoT. First, we review various DL techniques, including convolutional neural networks, auto-encoders, and recurrent neural networks and there use in different industries. Then, we outline numerous use cases of DL for IIoT systems, including smart manufacturing, smart metering, smart agriculture, etc. Moreover, we categorize several research challenges regarding the effective design and appropriate implementation of DL-IIoT. Finally, we present several future research directions to inspire and motivate further research in this area.