论文标题

“单子”不稳定性在2D湍流剪切层的演变中的作用

The role of the `monopole' instability in the evolution of 2D turbulent free shear layers

论文作者

Suryanarayanan, Saikishan, Brown, Garry, Narasimha, Roddam

论文摘要

使用涡流仿真将所有动力学凝结到生物 - 避免关系的运动学中,分析了不稳定性在2D生长中的生长中的作用。发现恒定涡度层中扰动的初始演变与瑞利的线性稳定性理论完全一致。然后,存在一个非宇宙结构的非宇宙演化阶段,而不是通过瑞利稳定性理论,而是通过karman-rubach-lamb线性单极线性不稳定性,直到相邻的连贯结构合并为止。经过几次合并后,该层最终演变成一个自我保护的反向级联反应,其特征在于Suryanarayanan等人发现的通用传播速率。 (Phys.Rev.E 89,013009,2014)以及结构($λ_F$)与层厚度($δ_为$)的主要间距($λ_F$)的普遍价值。在这个普遍的自我保证状态下,雷利理论对局部现有的“基础”流进行了准确的预测,扰动幅度的局部扩增可以准确地预测。 Morris等人的模型。 (Proc.roy.soc。A431,219-243,1990。),它通过平均流量损失的能量与扰动模式的能量获益(根据瑞利理论的应用计算)来计算层的生长,以提供非额外条件依赖于初始条件依赖性的分布和谱。原因是,对于具有连贯结构的流程,对雷利不稳定性的预测仅在通用自我保证状态下实现的$λ_f/δ_Ω$的特殊值仅以特殊值有效。

The role of instability in the growth of a 2D, temporally evolving, `turbulent' free shear layer is analyzed using vortex-gas simulations that condense all dynamics into the kinematics of the Biot-Savart relation. The initial evolution of perturbations in a constant-vorticity layer is found to be in accurate agreement with the linear stability theory of Rayleigh. There is then a stage of non-universal evolution of coherent structures that is closely approximated not by Rayleigh stability theory, but by the Karman-Rubach-Lamb linear instability of monopoles, until the neighboring coherent structures merge. After several mergers, the layer evolves eventually to a self-preserving reverse cascade, characterized by a universal spread rate found by Suryanarayanan et al. (Phys.Rev.E 89, 013009, 2014) and a universal value of the ratio of dominant spacing of structures ($Λ_f$) to the layer thickness ($δ_ω$). In this universal, self-preserving state, the local amplification of perturbation amplitudes is accurately predicted by Rayleigh theory for the locally existing `base' flow. The model of Morris et al. (Proc.Roy.Soc. A 431, 219-243, 1990.), which computes the growth of the layer by balancing the energy lost by the mean flow with the energy gain of the perturbation modes (computed from an application of Rayleigh theory), is shown, however, to provide a non-universal asymptotic state with initial condition dependent spread-rate and spectra. The reason is that the predictions of the Rayleigh instability, for a flow regime with coherent structures, are valid only at the special value of $Λ_f/δ_ω$ achieved in the universal self-preserving state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源